A071325 Number of squares > 1 dividing n.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0
Offset: 1
Keywords
Links
Programs
-
Mathematica
a[n_] := DivisorSum[n, Boole[#>1 && IntegerQ[Sqrt[#]]]&] Array[a, 100] (* Jean-François Alcover, Dec 10 2021 *)
-
PARI
a(n) = sumdiv(n, d, issquare(d) && (d>1)); \\ Michel Marcus, Jan 04 2017
-
Python
from math import prod from sympy import factorint def A071325(n): return prod((e>>1)+1 for e in factorint(n).values())-1 # Chai Wah Wu, Oct 06 2024
Formula
a(n) = A046951(n) - 1.
G.f.: Sum_{k>=2} x^(k^2)/(1 - x^(k^2)). - Ilya Gutkovskiy, Jan 04 2017
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi^2/6 - 1. - Amiram Eldar, Sep 25 2022