cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071326 Sum of squares > 1 dividing n.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 4, 0, 0, 0, 20, 0, 9, 0, 4, 0, 0, 0, 4, 25, 0, 9, 4, 0, 0, 0, 20, 0, 0, 0, 49, 0, 0, 0, 4, 0, 0, 0, 4, 9, 0, 0, 20, 49, 25, 0, 4, 0, 9, 0, 4, 0, 0, 0, 4, 0, 0, 9, 84, 0, 0, 0, 4, 0, 0, 0, 49, 0, 0, 25, 4, 0, 0, 0, 20, 90, 0, 0, 4, 0, 0, 0, 4, 0, 9, 0, 4, 0, 0, 0, 20, 0, 49, 9, 129
Offset: 1

Views

Author

Reinhard Zumkeller, May 18 2002

Keywords

Crossrefs

One less than A035316.

Programs

  • Mathematica
    Array[DivisorSum[#, # &, IntegerQ@ Sqrt@ # &] - 1 &, 100] (* Michael De Vlieger, Nov 17 2017 *)
    f[p_, e_] := (p^(2*(1+Floor[e/2]))-1)/(p^2-1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - 1; Array[a, 100] (* Amiram Eldar, May 15 2025 *)
  • PARI
    A071326(n) = sumdiv(n,d,(d>1)*issquare(d)*d); \\ Antti Karttunen, Nov 17 2017

Formula

a(n) = A035316(n)-1.
Sum_{d|n, d>1} A010052(d). - Antti Karttunen, Nov 17 2017

Extensions

More terms from Antti Karttunen, Nov 17 2017

A370239 The sum of divisors of n that are squares of squarefree numbers.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 1, 1, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 26, 1, 10, 5, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 1, 5, 1, 1, 1, 5, 10, 1, 1, 5, 50, 26, 1, 5, 1, 10, 1, 5, 1, 1, 1, 5, 1, 1, 10, 5, 1, 1, 1, 5, 1, 1, 1, 50, 1, 1, 26, 5, 1, 1, 1, 5, 10, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 13 2024

Keywords

Comments

The number of these divisors is A323308(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, 1 + p^2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^2));}

Formula

Multiplicative with a(p) = 1 and a(p^e) = 1 + p^2 for e >= 2.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) = A071327(n) + 1 if and only if n is not in A036785.
Dirichlet g.f.: zeta(s)*zeta(2*s-2)/zeta(4*s-4).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 2*zeta(3/2)/Pi^2 = 0.5293779248... .
Showing 1-2 of 2 results.