A071391 Least number m such that sigma(m) + phi(m) = n or 0 if no such number exists.
0, 1, 0, 2, 0, 3, 0, 0, 4, 5, 0, 0, 0, 6, 0, 0, 0, 0, 8, 0, 0, 10, 0, 0, 0, 13, 0, 0, 0, 14, 0, 12, 0, 17, 0, 0, 0, 19, 16, 0, 0, 0, 0, 21, 18, 22, 0, 0, 0, 20, 25, 0, 0, 26, 0, 0, 0, 27, 0, 0, 0, 31, 0, 0, 0, 0, 0, 24, 0, 34, 0, 35, 0, 37, 0, 0, 0, 38, 32, 30, 0, 41, 0, 0, 0, 43, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
n=256: a(256) = 110, sigma(110) + phi(110) = 216 + 40 = 256 = n and no positive integer k < 110 has sigma(k) + phi(k) = 256.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[x_] := DivisorSigma[1, x]+EulerPhi[x] t=Table[0, {100}]; Do[c=f[n]; If[c<101&&t[[c]]==0, t[[c]]=n], {n, 1, 1000000}]; t
-
PARI
a(n) = for(m=1, n, if(sigma(m)+eulerphi(m)==n, return(m))); 0; \\ Jinyuan Wang, Jul 29 2020
-
PARI
first(n) = { my(v = vector(n)); for(i = 1, n, c = sigma(i) + eulerphi(i); if(c <= n, if(v[c] == 0, v[c] = i ) ) ); v } \\ David A. Corneth, Jul 30 2020
Comments