A071318 Lesser of 2 consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that both k and k+1 are in A067259.
44, 49, 75, 98, 99, 116, 147, 171, 244, 260, 275, 315, 332, 363, 387, 475, 476, 507, 524, 531, 548, 549, 603, 604, 636, 692, 724, 725, 747, 764, 774, 819, 844, 845, 846, 867, 908, 924, 931, 963, 980, 1035, 1075, 1083, 1179, 1196, 1251, 1274, 1275, 1324
Offset: 1
Keywords
Examples
75 is a term since 75 = 3*5^2 and 76 = 2^2*19.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Crossrefs
Programs
-
Haskell
a071318 n = a071318_list !! (n-1) a071318_list = [x | x <- [1..], a212793 x == 1, a008966 x == 0, let y = x+1, a212793 y == 1, a008966 y == 0] -- Reinhard Zumkeller, May 27 2012
-
Mathematica
With[{s = Select[Range[1350], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ Position[t, 1][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)
-
PARI
isok(n) = (n>1) && (vecmax(factor(n)[, 2])==2) && (vecmax(factor(n+1)[, 2])==2); \\ Michel Marcus, Aug 02 2017
Comments