A071626 Number of distinct exponents in the prime factorization of n!.
0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1
Examples
n=7: 7! = 5040 = 2*2*2*2*3*3*5*7; three different exponents arise: 4, 2 and 1; a(7)=3. n=7: { floor(7/p) : p <= 7, p prime } = {3,2,1}. So, its cardinality is 3. - _Md Rahil Miraj_, Apr 05 2024
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- P. Erdős, Miscellaneous problems in number theory, Proceedings of the Eleventh Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1981), Congressus Numerantium 34 (1982), 25-45.
- Randell Heyman and Md Rahil Miraj, On some floor function sets, arXiv:2309.16072 [math.NT], 2023-2024.
Crossrefs
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] Table[Length[Union[ep[w! ]]], {w, 1, 100}] Table[Length[Union[Last/@If[n==1,{},FactorInteger[n!]]]],{n,30}] (* Gus Wiseman, May 15 2019 *)
-
PARI
a(n) = #Set(factor(n!)[, 2]); \\ Michel Marcus, Sep 05 2017
Comments