cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071685 Non-palindromic numbers n, not divisible by 10, such that either n divides R(n) or R(n) divides n, where R(n) is the digit-reversal of n.

Original entry on oeis.org

1089, 2178, 8712, 9801, 10989, 21978, 87912, 98901, 109989, 219978, 879912, 989901, 1099989, 2199978, 8799912, 9899901, 10891089, 10999989, 21782178, 21999978, 87128712, 87999912, 98019801, 98999901, 108901089, 109999989
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Comments

The quotient R(n)/n or n/R(n) is always 4 or 9.
This is the union of the four sequence A001232, A222814, A008918, A222815. Equivalently, the union of A008919 and A031877.
There are 4*Fibonacci(floor((n-2)/2)) terms with n digits (this is 2*A214927 or essentially 4*A103609). - Ray Chandler, Oct 12 2017
Conjecture: every term mod 100 is equal to 1, 12, 78, or 89. - Harvey P. Dale, Dec 13 2017

Examples

			Palindromic solutions like 12021 or also solutions divisible by 10 were filtered out like {8380,838; q=10} or {8400,48; q=175}. In case of m>R(m), q=m/R(m)=4 or 9.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[IntegerDigits[x]] Do[s=Mod[Max[{n, tn[red[n]]}], Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[Mod[n, 10], 0] &&!Equal[n, r], Print[{n, r/n}]], {n, 1, 1000000}]
    npnQ[n_]:=Module[{r=IntegerReverse[n]},!PalindromeQ[n]&&!Divisible[ n,10] &&(Mod[n,r]==0||Mod[r,n]==0)]; Select[Range[11*10^7],npnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2017 *)

Formula

x = q*R(x), q is an integer q<>1, q<>10^j and neither of x or R(x) is divisible by 10.

Extensions

Corrected and extended by Harvey P. Dale, Jul 01 2013
Edited by N. J. A. Sloane, Jul 02 2013
Missing terms inserted by Ray Chandler, Oct 09 2017
Incorrect comment removed by Ray Chandler, Oct 12 2017