A071710 Highly Wilsonian primes: smallest primes p such that w(p)=n where w(n) denote the number of nonnegative integers k such that k! = +1 or -1 (mod n).
2, 3, 5, 7, 17, 67, 137, 23, 61, 71, 401, 1907, 661, 12227, 29873, 96731, 99721, 154243, 480209, 3408707, 1738901, 27341387
Offset: 2
Links
- K. S. Brown, Highly Wilsonian Primes
- Igor Naverniouk, C++ program
Programs
-
Mathematica
w[n_] := Block[{c = k = m = 1}, While[k < n, m = Mod[m *= k, n]; If[m == 1 || m + 1 == n, c++ ]; k++ ]; c]
-
PARI
wilsonian(p)={ local(s,t,pMinusOne); pMinusOne=p-1; s=4; t=24; for(k=5,p-3, t=(t*k)%p; if(t==1 || t==pMinusOne, s=s+1) ); s } \\ Charles R Greathouse IV, Jan 24 2007
Extensions
2 more terms from Charles R Greathouse IV, Jan 24 2007
a(23) from Igor Naverniouk (igor(AT)cs.utoronto.ca), May 09 2007
Comments