cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071718 Expansion of (1+x^2*C)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 3, 10, 32, 104, 345, 1166, 4004, 13936, 49062, 174420, 625328, 2258416, 8209045, 30008790, 110255100, 406923360, 1507973610, 5608843020, 20931740640, 78354322800, 294127079610, 1106939020044, 4175827174152, 15787544777504
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n)=number of Dyck (n+3)-paths whose third from last upstep initiates a long ascent, n>=1. A long ascent is one consisting of 2 or more upsteps. For example, a(1)=3 counts UDuUUDDD, UDuUDUDD, UDuUDDUD (third from last upstep in small type). - David Callan, Dec 08 2004
For n>0 a(n)=number of Dyck (n+3)-paths whose 5th and 6th steps are DU. For example, a(1)=3 counts UDUUduDD, UUDUduDD, UUUDduDD. - David Scambler, Feb 14 2011
Let X_n be the set of all noncrossing set partitions of an n-element set which either do not contain {n-1,n} as a block, or which do not contain the block {n} whenever 1 and n-1 are in the same block. a(n) is the cardinality of X_{n+2}. For example, a(1)=3 counts 1|2|3, 13|2, 123. - Henri Mühle, Jan 10 2017

Programs

  • Mathematica
    {1, 3}~Join~Table[(5/(n + 3) + 9/(n - 1))*Binomial[2 n, n - 2], {n, 2, 24}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

For n>1, a(n) = 3*A000245(n) + A000344(n) = (5/(n+3) + 9/(n-1))*binomial(2n,n-2).
D-finite with recurrence (n+3)*a(n) + 2*(-2*n-3)*a(n-1) + 2*(-n+1)*a(n-2) + 4*(2*n-5)*a(n-3) = 0. - R. J. Mathar, Aug 25 2013