cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A099376 An inverse Chebyshev transform of x^3.

Original entry on oeis.org

0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248
Offset: 0

Views

Author

Paul Barry, Oct 13 2004

Keywords

Comments

The sequence is 0,0,0,1,0,4,0,14,0,...with zeros restored. Second binomial transform of (-1)^n*A003518(n). Second binomial transform of expansion of x^3*c(-x)^8, where c(x) is g.f. of A000108. The g.f. is transformed to x^3 under the Chebyshev transformation A(x) -> (1/(1+x^2))*A(x/(1+x^2)). For a sequence b(n), this corresponds to taking Sum_{k=0..floor(n/2)} C(n-k,k) * (-1)^k * b(n-2k), or Sum_{k=0..n} C((n+k)/2,k) * b(k) * (-1)^((n-k)/2) * (1+(-1)^(n-k))/2.
Let X_n be the set of all noncrossing set partitions of an n-element set which either do not contain {n-1,n} as a block, or which do not contain the block {n} whenever 1 and n-1 are in the same block. For n>0, (-1)^n*a(n) gives the value of the Möbius function of X_{n+2} ordered by dual refinement between the discrete and the full partition. For example, X_3 is a chain consisting of 3 elements and its Möbius function between least and greatest element therefore takes the value a(1)=0. - Henri Mühle, Jan 10 2017

Crossrefs

Partial sums of A026016.

Programs

  • Magma
    [Catalan(n+2) -2*Catalan(n+1): n in [0..30]]; // G. C. Greubel, May 05 2021
    
  • Mathematica
    Table[CatalanNumber[n+2] -2CatalanNumber[n+1], {n, 0, 30}] (* or *)
    Table[4 Binomial[2#+3, #]/(#+4) &[n-1], {n, 0, 30}] (* Michael De Vlieger, Jan 10 2017, latter after Harvey P. Dale at A002057 *)
  • PARI
    {a(n)= if(n<1, 0, n++; 2* binomial(2*n, n-2)/n)} /* Michael Somos, Apr 11 2007 */
    
  • Sage
    [catalan_number(n+2) -2*catalan_number(n+1) for n in (0..30)] # G. C. Greubel, May 05 2021

Formula

G.f.: (1-2*x)^4*( sqrt((1+2*x)/(1-2*x)) - 1)^8/(256*x^5).
a(n) = Sum_{k=0..n} (k+1)*C(n, (n-k)/2)*(-1)^k*( C(3, k) -3*C(2, k) +3*C(1, k) -C(0, k) )*(1+(-1)^(n-k))/(n+k+2).
a(n) = A002057(n-1). - Michael Somos, Jul 31 2005
Given an ellipse with eccentricity e and major and minor axis a and b respectively, then ((a-b)/ (a+b))^2 = 1*(e/2)^4 +4*(e/2)^6 +14*(e/2)^8 +48*(e/2)^10 + ... - Michael Somos, Apr 11 2007
E.g.f.: exp(2x)*(Bessel_I(1,2x) - Bessel_I(3,2x)). - Paul Barry, Jun 04 2007
D-finite with recurrence (n+3)*(n-1)*a(n) -2*n*(2*n+1)*a(n-1)=0. - R. J. Mathar, Sep 26 2012
a(n) = A000108(n+2) - 2*A000108(n+1) for n>0. - Henri Mühle, Jan 10 2017, corrected Sep 25 2021
G.f.: ( (1-2*x)*c(x) - (1-x) )/x^2, where c(x) is the gf of A000108. - G. C. Greubel, May 05 2021
From Peter Bala, Aug 30 2023: (Start)
a(n) = 2*n/((n+2)*(n+3)) * binomial(2*n+2, n+1).
a(n) = 2*Sum_{k = 0..n-1} 1/(n+1)*binomial(n+1, k)*binomial(n+1, k+2). (End)

A280891 Number of certain noncrossing set partitions.

Original entry on oeis.org

1, 4, 12, 37, 118, 387, 1298, 4433, 15366, 53924, 191216, 684114, 2466428, 8951945, 32683230, 119949945, 442281030, 1637618400, 6086481720, 22699003830, 84918443220, 318593346630, 1198421583684, 4518886787802, 17077448924828, 64671604514552, 245380598678208, 932708665735364, 3551238550341944, 13542393822575541
Offset: 1

Views

Author

Henri Mühle, Jan 10 2017

Keywords

Comments

Let X_n be the set of all noncrossing set partitions of an n-element set that do not contain {n-1, n} as a block, and also do not contain the block {n} whenever 1 and n-1 are in the same block. a(n) is the number of elements of X_{n+2} in which n-2 and n-1 lie in the same block.
Equivalently, a(n) is the number of noncrossing set partitions of {1, 2, ..., n+2} such that n and n+1 belong to the same block, and if 1 also belongs to this block then n+2 does as well. This leads to the formula a(n) = C(n + 1) - C(n - 1), where C(n) is the n-th Catalan number (A000108): there are C(n + 1) noncrossing set partitions with n and n + 1 in the same block, and C(n - 1) noncrossing set partitions with {n + 2} a singleton block and 1, n, and n + 1 in the same block. - Joel B. Lewis, Apr 19 2017

Examples

			X_4 has the following 10 elements: 1|2|3|4, 12|3|4, 1|23|4, 1|24|3, 14|2|3, 1|234, 124|3, 14|23, 134|2, 1234. The a(2)=4 elements in which 2 and 3 are in the same block are 1|23|4, 1|234, 14|23, 1234.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x) (1 - 3 x - (1 - x) Sqrt[1 - 4 x])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2020 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    vector(66,n,C(n + 1) - C(n - 1)) \\ Joerg Arndt, Apr 19 2017

Formula

a(n) = C(n + 1) - C(n - 1) where C(n) is the n-th Catalan number (A000108). - Joel B. Lewis, Apr 19 2017
G.f.: (1 + x)*(1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*x^2). - Ilya Gutkovskiy, Apr 20 2017

A071717 Expansion of (1 + x^2*C)*C^2, where C = (1 - sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 6, 17, 51, 160, 519, 1727, 5863, 20228, 70720, 250002, 892126, 3209328, 11626385, 42378075, 155307615, 571925820, 2115257100, 7853744910, 29263124250, 109384710240, 410075910270, 1541481197334, 5808790935126
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) , x, n+1), x, n), n = 0..30); # G. C. Greubel, May 30 2020
  • Mathematica
    With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(1 + x^2*#)*#^2 &[(1 - (1 - 4 x)^(1/2))/(2 x)], {x, 0, 24}], x]] (* Michael De Vlieger, May 30 2020 *)
  • Sage
    def A071717_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) ).list()
    A071717_list(30) # G. C. Greubel, May 30 2020

Formula

Conjecture: (n+2)*a(n) +(-3*n-2)*a(n-1) +(-5*n+8)*a(n-2) +2*(2*n-7)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
G.f.: ( (1 -x -3*x^2) - (1 +x -x^2)*sqrt(1-4*x) )/(2*x^2). - G. C. Greubel, May 30 2020

A273821 Triangle read by rows: T(n,k) is the number of 123-avoiding permutations p of [n] (A000108) such that k is maximal with the property that the k largest entries of p, taken in order, avoid 132.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 3, 3, 8, 0, 9, 10, 7, 16, 0, 28, 32, 25, 15, 32, 0, 90, 104, 84, 56, 31, 64, 0, 297, 345, 283, 195, 119, 63, 128, 0, 1001, 1166, 965, 676, 425, 246, 127, 256, 0, 3432, 4004, 3333, 2359, 1506, 894, 501, 255, 512
Offset: 1

Views

Author

David Callan, May 31 2016

Keywords

Comments

It appears that each column, other than the first, has asymptotic growth rate of 4.

Examples

			For example, for the 123-avoiding permutation p = 42513, the 3 largest entries, 453, avoid 132 but the 4 largest entries, 4253, do not, and so p is counted by T(5,3).
Triangle begins:
1
0   2
0   1   4
0   3   3   8
0   9  10   7  16
0, 28, 32, 25, 15, 32
...
		

Crossrefs

Except for the initial term, column 2 is A000245, column 3 is A071718, and row sums are A000108.

Programs

  • Mathematica
    Map[Rest, Rest[Map[CoefficientList[#, y] &, CoefficientList[ Normal[Series[ c - 1 + ((1 - y) (1 - x y) (1 - (1 - x y) c ))/((1 - 2 x y) (1 - y + x y^2)) /. {c :> (1 - Sqrt[1 - 4 x])/(2 x)}, {x, 0, 10}, {y, 0, 10}]], x]]]]
    u[1, 1] = 1; u[2, 2] = 2;
    u[n_, 1] /; n > 1 := 0; u[n_, k_] /; n < 1 || k < 1 || k > n := 0;
    u[n_, k_] /; n >= 3 && 2 <= k <= n := u[n, k] = 3 u[n - 1, k - 1] - 2 u[n - 2, k - 2] + u[n, k + 1] - 2 u[n - 1, k] + If[k == 2, CatalanNumber[n - 2], 0];
    Table[u[n, k], {n, 10}, {k, n}]

Formula

G.f.: Sum_{n>=1, 1<=k<=n} T(n,k) x^n y^k = C(x) - 1 + ((1 - y) (1 - x y) (1 - (1 - x y)C(x)))/((1 - 2 x y) (1 - y + x y^2) ) where C(x) = 1 + x + 2x^2 + 5x^3 + ... is the g.f. for the Catalan numbers A000108 (conjectured).
Showing 1-4 of 4 results.