A099376
An inverse Chebyshev transform of x^3.
Original entry on oeis.org
0, 1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248
Offset: 0
-
[Catalan(n+2) -2*Catalan(n+1): n in [0..30]]; // G. C. Greubel, May 05 2021
-
Table[CatalanNumber[n+2] -2CatalanNumber[n+1], {n, 0, 30}] (* or *)
Table[4 Binomial[2#+3, #]/(#+4) &[n-1], {n, 0, 30}] (* Michael De Vlieger, Jan 10 2017, latter after Harvey P. Dale at A002057 *)
-
{a(n)= if(n<1, 0, n++; 2* binomial(2*n, n-2)/n)} /* Michael Somos, Apr 11 2007 */
-
[catalan_number(n+2) -2*catalan_number(n+1) for n in (0..30)] # G. C. Greubel, May 05 2021
A280891
Number of certain noncrossing set partitions.
Original entry on oeis.org
1, 4, 12, 37, 118, 387, 1298, 4433, 15366, 53924, 191216, 684114, 2466428, 8951945, 32683230, 119949945, 442281030, 1637618400, 6086481720, 22699003830, 84918443220, 318593346630, 1198421583684, 4518886787802, 17077448924828, 64671604514552, 245380598678208, 932708665735364, 3551238550341944, 13542393822575541
Offset: 1
X_4 has the following 10 elements: 1|2|3|4, 12|3|4, 1|23|4, 1|24|3, 14|2|3, 1|234, 124|3, 14|23, 134|2, 1234. The a(2)=4 elements in which 2 and 3 are in the same block are 1|23|4, 1|234, 14|23, 1234.
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- H. Gao and R. Schiffler, On the Number of τ-Tilting Modules over Nakayama Algebras, SIGMA 16 (2020), 058.
- H. Mühle, Two Posets of Noncrossing Partitions Coming From Undesired Parking Spaces, arXiv:1701.02109 [math.CO], 2017.
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016.
- Qi Wang, Tau-tilting finite simply connected algebras, arXiv:1910.01937 [math.RT], 2019.
-
CoefficientList[Series[(1 + x) (1 - 3 x - (1 - x) Sqrt[1 - 4 x])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2020 *)
-
C(n)=binomial(2*n,n)/(n+1);
vector(66,n,C(n + 1) - C(n - 1)) \\ Joerg Arndt, Apr 19 2017
A071717
Expansion of (1 + x^2*C)*C^2, where C = (1 - sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 2, 6, 17, 51, 160, 519, 1727, 5863, 20228, 70720, 250002, 892126, 3209328, 11626385, 42378075, 155307615, 571925820, 2115257100, 7853744910, 29263124250, 109384710240, 410075910270, 1541481197334, 5808790935126
Offset: 0
-
seq(coeff(series( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) , x, n+1), x, n), n = 0..30); # G. C. Greubel, May 30 2020
-
With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(1 + x^2*#)*#^2 &[(1 - (1 - 4 x)^(1/2))/(2 x)], {x, 0, 24}], x]] (* Michael De Vlieger, May 30 2020 *)
-
def A071717_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) ).list()
A071717_list(30) # G. C. Greubel, May 30 2020
A273821
Triangle read by rows: T(n,k) is the number of 123-avoiding permutations p of [n] (A000108) such that k is maximal with the property that the k largest entries of p, taken in order, avoid 132.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 3, 3, 8, 0, 9, 10, 7, 16, 0, 28, 32, 25, 15, 32, 0, 90, 104, 84, 56, 31, 64, 0, 297, 345, 283, 195, 119, 63, 128, 0, 1001, 1166, 965, 676, 425, 246, 127, 256, 0, 3432, 4004, 3333, 2359, 1506, 894, 501, 255, 512
Offset: 1
For example, for the 123-avoiding permutation p = 42513, the 3 largest entries, 453, avoid 132 but the 4 largest entries, 4253, do not, and so p is counted by T(5,3).
Triangle begins:
1
0 2
0 1 4
0 3 3 8
0 9 10 7 16
0, 28, 32, 25, 15, 32
...
-
Map[Rest, Rest[Map[CoefficientList[#, y] &, CoefficientList[ Normal[Series[ c - 1 + ((1 - y) (1 - x y) (1 - (1 - x y) c ))/((1 - 2 x y) (1 - y + x y^2)) /. {c :> (1 - Sqrt[1 - 4 x])/(2 x)}, {x, 0, 10}, {y, 0, 10}]], x]]]]
u[1, 1] = 1; u[2, 2] = 2;
u[n_, 1] /; n > 1 := 0; u[n_, k_] /; n < 1 || k < 1 || k > n := 0;
u[n_, k_] /; n >= 3 && 2 <= k <= n := u[n, k] = 3 u[n - 1, k - 1] - 2 u[n - 2, k - 2] + u[n, k + 1] - 2 u[n - 1, k] + If[k == 2, CatalanNumber[n - 2], 0];
Table[u[n, k], {n, 10}, {k, n}]
Showing 1-4 of 4 results.
Comments