cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071778 Number of ordered triples (a, b, c) with gcd(a, b, c) = 1 and 1 <= {a, b, c} <= n.

Original entry on oeis.org

1, 7, 25, 55, 115, 181, 307, 439, 637, 841, 1171, 1447, 1915, 2329, 2881, 3433, 4249, 4879, 5905, 6745, 7861, 8911, 10429, 11557, 13297, 14773, 16663, 18355, 20791, 22495, 25285, 27541, 30361, 32905, 36289, 38845, 42841, 46027, 49987, 53395
Offset: 1

Views

Author

Michael Malak (mmalak(AT)alum.mit.edu), Jun 04 2002

Keywords

Crossrefs

Cf. A018805 (ordered pairs), A082540, A082544, A343978, A344522.

Programs

  • Java
    public class Triples { public static void main(String[] argv) { int i, j, k, a, m, n, d; boolean cf; try {a = Integer.parseInt(argv[0]);} catch (Exception e) {a = 10;}
    for (m = 1; m <= a; m++) { n = 0; for (i = 1; i <= m; i++) for (j = 1; j <= m; j++) for (k = 1; k <= m; k++) { cf = false; for (d = 2; d <= m; d++) cf = cf || ((i % d == 0) && (j % d == 0) && (k % d == 0)); if (!cf) n++; } System.out.println(m + ": " + n); } } }
    
  • Maple
    f:=proc(n) local i,j,k,t1,t2,t3; t1:=0; for i from 1 to n do for j from 1 to n do t2:=gcd(i,j); for k from 1 to n do t3:=gcd(t2,k); if t3 = 1 then t1:=t1+1; fi; od: od: od: t1; end;
  • Mathematica
    a[n_] := Sum[MoebiusMu[k]*Quotient[n, k]^3, {k, 1, n}]; Array[a, 40] (* Jean-François Alcover, Apr 14 2014, after Benoit Cloitre *)
  • PARI
    a(n)=sum(k=1,n,moebius(k)*(n\k)^3)
    
  • PARI
    a(n)=my(s); forsquarefree(k=1,n, s+=moebius(k)*(n\k[1])^3); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^3)/(1-x)) \\ Seiichi Manyama, May 22 2021
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A071778(n):
        if n == 0:
            return 0
        c, j = 1, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A071778(k1)
            j, k1 = j2, n//j2
        return n*(n**2-1)-c+j # Chai Wah Wu, Mar 29 2021

Formula

a(n) = Sum_{k=1..n} mu(k)*floor(n/k)^3. - Benoit Cloitre, May 11 2003
a(n) = n^3 - Sum_{j=2..n} a(floor(n/j)). - Vladeta Jovovic, Nov 30 2004
G.f.: (1/(1 - x)) * Sum_{k >= 1} mu(k) * x^k * (1 + 4*x^k + x^(2*k))/(1 - x^k)^3. - Seiichi Manyama, May 22 2021
a(n) ~ n^3/zeta(3). - Vaclav Kotesovec, Sep 14 2021