A071786 In prime factorization of n replace each prime with its reversal (in decimal notation).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 31, 14, 15, 16, 71, 18, 91, 20, 21, 22, 32, 24, 25, 62, 27, 28, 92, 30, 13, 32, 33, 142, 35, 36, 73, 182, 93, 40, 14, 42, 34, 44, 45, 64, 74, 48, 49, 50, 213, 124, 35, 54, 55, 56, 273, 184, 95, 60, 16, 26, 63, 64, 155, 66, 76, 284, 96, 70, 17, 72
Offset: 1
Examples
a(143) = a(11*13) = a(11)*a(13) = 11*31 = 341.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- Index to divisibility sequences
Crossrefs
Programs
-
Haskell
a071786 = product . map a004086 . a027746_row -- Reinhard Zumkeller, Oct 14 2011
-
Maple
read("transforms") ; A071786 := proc(n) local ifs, a, d ; ifs := ifactors(n)[2] ; a := 1 ; for d in ifs do a := a*digrev(op(1, d))^op(2, d) ; od: a ; end: # R. J. Mathar, Jun 16 2009 # second Maple program: r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n): a:= n-> mul(r(i[1])^i[2], i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jun 19 2017
-
Mathematica
Table[Times@@IntegerReverse/@Flatten[Table[#[[1]],#[[2]]]&/@ FactorInteger[ n]],{n,80}] (* Harvey P. Dale, Jul 08 2017 *)
-
PARI
rev(n)=fromdigits(Vecrev(digits(n))) a(n)=my(f=factor(n)); prod(i=1,#f~,rev(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
-
Python
from sympy import factorint from operator import mul from functools import reduce def A071786(n): return 1 if n==1 else reduce(mul,(int(str(p)[::-1])**e for p,e in factorint(n).items())) # Chai Wah Wu, Aug 14 2014
Comments