cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071801 a(n) = binomial(2n, n) - binomial(n, floor(n/2))^2.

Original entry on oeis.org

0, 1, 2, 11, 34, 152, 524, 2207, 7970, 32744, 121252, 491988, 1850380, 7455944, 28337976, 113708295, 435443490, 1742630120, 6711230900, 26811568916, 103711749284, 413849297784, 1606464657096, 6405315809516, 24935144010764, 99367486347752
Offset: 0

Views

Author

T. D. Noe, Jun 06 2002

Keywords

Comments

Number of lattice paths in the lattice [0..n] X [0..n] which do not pass through the point (floor(n/2),floor(n/2)). In this case, the "hole" in the lattice is at the point closest to the lattice center.

Crossrefs

Programs

  • Magma
    [Binomial(2*n, n) - Binomial(n, Floor(n/2))^2 : n in [0..40]]; // Wesley Ivan Hurt, Jan 03 2017
  • Maple
    A071801:=n->binomial(2*n, n) - binomial(n, floor(n/2))^2: seq(A071801(n), n=0..30); # Wesley Ivan Hurt, Jan 03 2017
  • Mathematica
    Table[Binomial[2n, n] - Binomial[n, Floor[n/2]]^2, {n, 0, 20}]

Formula

a(n) = A000984(n) - A001405(n)^2.
Also, a(n) = Sum_{m=0..n} binomial(n, m)^2 - binomial(n, floor(n/2))^2.
G.f.: 1/sqrt(1-4*x) + 1/(4*x) - (4*x+1)*EllipticK(4*x)/(2*x*Pi). - Mark van Hoeij, May 01 2013

Extensions

More terms from Roger L. Bagula, Aug 28 2006
Edited by N. J. A. Sloane, Oct 08 2006

A071800 Number of lattice paths in the lattice [0..2n] X [0..2n] X [0..2n] which do not pass through the point (n,n,n). Number of paths through a lattice containing a "hole".

Original entry on oeis.org

54, 26550, 14330736, 8264889270, 4978317147804, 3090501687886704, 1961313438507566400, 1265749551338006549430, 827693426702217868006500, 547017649101008848332870300, 364691794467483796757326646400, 244920478151771001164678945670000
Offset: 1

Views

Author

T. D. Noe, Jun 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Factorial[6n]/Factorial[2n]^3-(Factorial[3n]/Factorial[n]^3)^2, {n, 1, 10}]

Formula

a(n) = s(3,2n)-s(3,n)^2.
Showing 1-2 of 2 results.