A071833 Frequency ratios for notes of C-major scale starting at c = 24 and using Ptolemy's intense diatonic scale.
24, 27, 30, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 90, 96, 108, 120, 128, 144, 160, 180, 192, 216, 240, 256, 288, 320, 360, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2560, 2880
Offset: 0
Examples
The ratios are 24 times 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b), followed by these 7 numbers multiplied by successive powers of 2.
Links
- Wikipedia, Ptolemy's intense diatonic scale.
- Wikipedia, Five-limit tuning. Diatonic scale.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2).
Programs
-
Mathematica
Table[ 2^Floor[n/7] ( 3*(91 + (-1)^Mod[n, 7] ) + 42 Mod[n, 7] + 8 Sqrt[3] Sin[Pi(1 + Mod[n, 7])/3] ) / 12, {n, 0, 70}] (* Federico Provvedi, Aug 28 2012 *) 3*2^(3+Floor[#/7])*Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]&/@Range[0,70] (* Federico Provvedi, Oct 13 2013 *) LinearRecurrence[{0,0,0,0,0,0,2},{24,27,30,32,36,40,45},50] (* Harvey P. Dale, May 23 2016 *)
-
Python
def a(n): return [24, 27, 30, 32, 36, 40, 45][n % 7] << (n // 7) # Peter Luschny, Aug 22 2024
Formula
a(n) = 2^floor(n/7) * (3*(91 + (-1)^(n mod 7)) + 42*(n mod 7) + 8*sqrt(3) * sin(Pi*(1+(n mod 7))/3))/12. - Federico Provvedi, Aug 28 2012
G.f.: -(45*x^6 + 40*x^5 + 36*x^4 + 32*x^3 + 30*x^2 + 27*x + 24) / (2*x^7 - 1). - Colin Barker, Feb 14 2014
a(b(n)) - a(b(n)+1) - a(b(n)+2) + a(b(n)+3) - a(b(n)+4) + a(b(n)+5) + a(b(n)+6) - a(b(n)+7) = 0, where b(n) = A047274(n). - Federico Provvedi, Apr 19 2024
a(n) = 2^floor(n/7) * round(24 * 2^(floor( (12*(n mod 7)+5)/7) / 12)). - Robert B Fowler, Aug 22 2024
Extensions
More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Oct 31 2005
Name made more specific by Jon E. Schoenfield, Sep 12 2022
Comments