cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A071831 Frequency ratios for notes of C-major scale starting at c = 1 (numerators).

Original entry on oeis.org

1, 9, 5, 4, 3, 5, 15, 2, 9, 5, 8, 3, 10, 15, 4, 9, 5, 16, 6, 20, 15, 8, 9, 10, 32, 12, 40, 15, 16, 18, 20, 64, 24, 80, 30, 32, 36, 40, 128, 48, 160, 60, 64, 72, 80, 256, 96, 320, 120, 128, 144, 160, 512, 192, 640, 240, 256, 288, 320, 1024, 384, 1280, 480, 512, 576, 640, 2048
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Examples

			The ratios are 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b); followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Programs

  • Mathematica
    Numerator[2^Floor[#/7]Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]]&/@Range[0,70] (* Federico Provvedi, Feb 14 2014 *)
  • PARI
    r=[1,9/8,5/4,4/3,3/2,5/3,15/8]; for(n=0,10, a=2^n*r; for(m=1,7, print1(numerator(a[m])", "))) \\ Rick L. Shepherd, Apr 06 2006
    
  • PARI
    A071831(n)=numerator([1,9/8,5/4,4/3,3/2,5/3,15/8][n%7+1]*2^(n\7))  \\ M. F. Hasler, Jun 13 2012

Formula

a(n+7) = 2*a(n) for n >= 21. - Rick L. Shepherd, Apr 06 2006
G.f.: (15*x^27 + 9*x^22 + 15*x^20 + 5*x^16 + 9*x^15 + 15*x^13 + 3*x^11 + 5*x^9 + 9*x^8 - 15*x^6 - 5*x^5 - 3*x^4 - 4*x^3 - 5*x^2 - 9*x - 1) / (2*x^7 - 1). - Colin Barker, Feb 14 2014

Extensions

More terms from Rick L. Shepherd, Apr 06 2006

A071832 Frequency ratios for notes of C-major scale starting at c = 1 (denominators).

Original entry on oeis.org

1, 8, 4, 3, 2, 3, 8, 1, 4, 2, 3, 1, 3, 4, 1, 2, 1, 3, 1, 3, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Examples

			The ratios are 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b); followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Programs

  • Mathematica
    Denominator[2^Floor[#/7]Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]]&/@Range[0,70] (* Federico Provvedi, Feb 14 2014 *)
    PadRight[{1,8,4,3,2,3,8,1,4,2,3,1,3,4,1,2,1,3,1,3,2},120,{1,1,1,3,1,3,1}] (* Harvey P. Dale, Nov 16 2020 *)
  • PARI
    r=[1,9/8,5/4,4/3,3/2,5/3,15/8]; for(n=0,20, a=2^n*r; for(m=1,7, print1(denominator(a[m]),","))) \\ Rick L. Shepherd, Apr 06 2006
    
  • PARI
    A071832(n)=denominator([1,9/8,5/4,4/3,3/2,5/3,15/8][n%7+1]*2^(n\7))  \\ M. F. Hasler, Jun 13 2012

Formula

a(n+7) = a(n) for n >= 21; (1,1,1,3,1,3,1 repeats). - Rick L. Shepherd, Apr 06 2006
G.f.: (x^27 + x^22 + 2*x^20 + x^16 + 2*x^15 + 4*x^13 + x^11 + 2*x^9 + 4*x^8 - 8*x^6 - 3*x^5 - 2*x^4 - 3*x^3 - 4*x^2 - 8*x - 1) / ((x - 1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)). - Colin Barker, Feb 14 2014

Extensions

More terms from Rick L. Shepherd, Apr 06 2006

A131062 Rounded frequencies of notes in a Pythagorean scale, starting with 260.7 Hertz for a C.

Original entry on oeis.org

261, 293, 330, 348, 391, 440, 495, 521, 587, 660, 695, 782, 880, 990, 1043, 1173, 1320, 1391, 1564, 1760, 1980, 2086
Offset: 1

Views

Author

Hans Isdahl, Sep 24 2007

Keywords

Comments

The approximate value of 260.7 Hz for the C corresponds to 16/27 * 440 Hz. The frequencies correspond to the ratios [1/1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2/1].

Crossrefs

Cf. A131071 for the same scale including half-tones.
Cf. A071831/A071832 = A071833/24. - M. F. Hasler, Jun 14 2012
Cf. A101285.

Extensions

Value of a(8) corrected, sequence extended to 3 octaves and comments added by M. F. Hasler (following suggestions by Franklin T. Adams-Watters and Charles R Greathouse IV), Oct 05 2011

A101285 Rounded frequencies in Hertz of the notes of the C major music scale beginning at A (A Minor equal-tempered).

Original entry on oeis.org

55, 62, 65, 73, 82, 87, 98, 110, 123, 131, 147, 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 523, 587, 659, 698, 784, 880, 988, 1047, 1175, 1319, 1397, 1568, 1760, 1976, 2093, 2349, 2637, 2794, 3136, 3520, 3951, 4186, 4699, 5274, 5588, 6272
Offset: 1

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered ("Wohltemperiert"), introduced by Johann Sebastian Bach.
Subsequence of A101286, obtained by removal of the 5 black keys' frequencies in each block of 12 keys. - R. J. Mathar, Mar 12 2008

Crossrefs

Programs

  • Maple
    A101286x := proc(n) 55*2.0^((n-1)/12.0) ; end: A101285x := proc(n) if n >= 8 then 2*A101285x(n-7) ; else A101286x(op(n,[1,3,4,6,8,9,11])) ; fi ; end: A101285 := proc(n) round(A101285x(n)) ; end: seq(A101285(n),n=1..80) ; # R. J. Mathar, Mar 12 2008
  • Mathematica
    Table[Round[55*2^((Floor[3(4k-1)/7]-1)/12)],{k,1,49}] (* Federico Provvedi, Feb 14 2014 *)
  • PARI
    forstep(i = 0, 100, [2, 1, 2, 2, 1, 2, 2], print(round(55*2^(i/12)))) \\ David Wasserman, Mar 17 2008

Formula

From David Wasserman, Mar 17 2008: (Start)
a(7n) = round(55*2^(n-1/6));
a(7n+1) = 55*2^n;
a(7n+2) = round(55*2^(n+1/6));
a(7n+3) = round(55*2^(n+1/4));
a(7n+4) = round(55*2^(n+5/12));
a(7n+5) = round(110*2^(n-5/12));
a(7n+6) = round(110*2^(n-1/3)). (End)
a(n) = round(55*2^(int(3*(4*k-1)/7-1)/12)). - Federico Provvedi, Feb 14 2014

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca) and R. J. Mathar, Mar 08 2007

A101286 Rounded frequencies in Hz of the notes of the chromatic music scale beginning at A.

Original entry on oeis.org

55, 58, 62, 65, 69, 73, 78, 82, 87, 92, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175
Offset: 1

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered. ("Wohltemperiert", introduced by Johann Sebastian Bach.)

Crossrefs

Programs

Formula

a(1+n) = round(55*2^(n/12)). - R. J. Mathar, Mar 12 2008

Extensions

Corrected by T. D. Noe, Nov 02 2006
More terms from R. J. Mathar, Mar 12 2008

A101287 Rounded frequencies in Hz of the notes of the pentatonic music scale beginning at F#.

Original entry on oeis.org

92, 104, 117, 139, 156, 185, 208, 233, 277, 311, 370, 415
Offset: 0

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered. ("Wohltemperiert", introduced by Johann Sebastian Bach.)

Crossrefs

Showing 1-6 of 6 results.