cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A071831 Frequency ratios for notes of C-major scale starting at c = 1 (numerators).

Original entry on oeis.org

1, 9, 5, 4, 3, 5, 15, 2, 9, 5, 8, 3, 10, 15, 4, 9, 5, 16, 6, 20, 15, 8, 9, 10, 32, 12, 40, 15, 16, 18, 20, 64, 24, 80, 30, 32, 36, 40, 128, 48, 160, 60, 64, 72, 80, 256, 96, 320, 120, 128, 144, 160, 512, 192, 640, 240, 256, 288, 320, 1024, 384, 1280, 480, 512, 576, 640, 2048
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Examples

			The ratios are 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b); followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Programs

  • Mathematica
    Numerator[2^Floor[#/7]Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]]&/@Range[0,70] (* Federico Provvedi, Feb 14 2014 *)
  • PARI
    r=[1,9/8,5/4,4/3,3/2,5/3,15/8]; for(n=0,10, a=2^n*r; for(m=1,7, print1(numerator(a[m])", "))) \\ Rick L. Shepherd, Apr 06 2006
    
  • PARI
    A071831(n)=numerator([1,9/8,5/4,4/3,3/2,5/3,15/8][n%7+1]*2^(n\7))  \\ M. F. Hasler, Jun 13 2012

Formula

a(n+7) = 2*a(n) for n >= 21. - Rick L. Shepherd, Apr 06 2006
G.f.: (15*x^27 + 9*x^22 + 15*x^20 + 5*x^16 + 9*x^15 + 15*x^13 + 3*x^11 + 5*x^9 + 9*x^8 - 15*x^6 - 5*x^5 - 3*x^4 - 4*x^3 - 5*x^2 - 9*x - 1) / (2*x^7 - 1). - Colin Barker, Feb 14 2014

Extensions

More terms from Rick L. Shepherd, Apr 06 2006

A071833 Frequency ratios for notes of C-major scale starting at c = 24 and using Ptolemy's intense diatonic scale.

Original entry on oeis.org

24, 27, 30, 32, 36, 40, 45, 48, 54, 60, 64, 72, 80, 90, 96, 108, 120, 128, 144, 160, 180, 192, 216, 240, 256, 288, 320, 360, 384, 432, 480, 512, 576, 640, 720, 768, 864, 960, 1024, 1152, 1280, 1440, 1536, 1728, 1920, 2048, 2304, 2560, 2880
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2002

Keywords

Comments

All terms are 5-smooth numbers due to the 5-limit-tuning of the natural major scale, where all the ratios prime factors are all less than or equal to 5. - Federico Provvedi, Sep 09 2022
From Federico Provvedi, Apr 19 2024: (Start)
This natural scale has interesting musical and mathematical Diophantine relations between the sum of distinct interval ratios a(n)/a(0) and their own indices: with indices i(k) != j(k), Sum_{k=1..n} a(i(k)) = Sum_{k=1..n} a(j(k)) and
Sum_{k=1..n} i(k) = Sum_{k=1..n} j(k), for n=4 a solution is:
1 + 4/3 + 5/3 + 15/8 = 9/8 + 5/4 + 3/2 + 2 ,
I + IV + VI + VII = II + III + V + VIII,
1 + 4 + 6 + 7 = 2 + 3 + 5 + 8 ,
a(0) + a(3) + a(5) + a(6) = a(1) + a(2) + a(4) + a(7). (End)
In the terminology of classical music theory, a(0) to a(7) are the frequencies of the diatonic C-major scale (C,D,E,F,G,A,B,C) as tuned in "Just Intonation", starting with frequency C=24=a(0). On keyboard instruments, these are the "white notes". Each higher octave of 8 notes doubles the frequencies of the prior octave, hence, a(n+7) = 2*a(n). The a(n) frequencies of Just Intonation are uniquely determined by requiring that the notes in each of the three principal major triads, namely, the tonic triad (C:E:G), the dominant triad (G:B:D), and the subdominant triad (F:A:C), all have frequencies with exact ratios of 4:5:6. The base frequency of C=24=a(0) is the lowest frequency of C for which all a(n) are integers. (In actual practice, keyboard notes are usually tuned to non-integer frequencies, are based on a "middle C" frequency around 261.62 Hz, and have irrational frequency ratios due to "equal temperament" - see A010774.) - Robert B Fowler, Aug 21 2024

Examples

			The ratios are 24 times 1 (c), 9/8 (d), 5/4 (e), 4/3 (f), 3/2 (g), 5/3 (a), 15/8 (b), followed by these 7 numbers multiplied by successive powers of 2.
		

Crossrefs

Cf. A071831, A071832, subset of A051037, A010774.

Programs

  • Mathematica
    Table[ 2^Floor[n/7] ( 3*(91 + (-1)^Mod[n, 7] ) + 42 Mod[n, 7] + 8 Sqrt[3] Sin[Pi(1 + Mod[n, 7])/3] ) / 12,  {n, 0, 70}] (* Federico Provvedi, Aug 28 2012 *)
    3*2^(3+Floor[#/7])*Rationalize[2^((-1+Floor[12(1+Mod[#,7])/7])/12),2^-6]&/@Range[0,70] (* Federico Provvedi, Oct 13 2013 *)
    LinearRecurrence[{0,0,0,0,0,0,2},{24,27,30,32,36,40,45},50] (* Harvey P. Dale, May 23 2016 *)
  • Python
    def a(n): return [24, 27, 30, 32, 36, 40, 45][n % 7] << (n // 7) # Peter Luschny, Aug 22 2024

Formula

a(n) = 2^floor(n/7) * (3*(91 + (-1)^(n mod 7)) + 42*(n mod 7) + 8*sqrt(3) * sin(Pi*(1+(n mod 7))/3))/12. - Federico Provvedi, Aug 28 2012
G.f.: -(45*x^6 + 40*x^5 + 36*x^4 + 32*x^3 + 30*x^2 + 27*x + 24) / (2*x^7 - 1). - Colin Barker, Feb 14 2014
a(b(n)) - a(b(n)+1) - a(b(n)+2) + a(b(n)+3) - a(b(n)+4) + a(b(n)+5) + a(b(n)+6) - a(b(n)+7) = 0, where b(n) = A047274(n). - Federico Provvedi, Apr 19 2024
a(n) = 2^floor(n/7) * round(24 * 2^(floor( (12*(n mod 7)+5)/7) / 12)). - Robert B Fowler, Aug 22 2024

Extensions

More terms from Kerri Sullivan (ksulliva(AT)ashland.edu), Oct 31 2005
Name made more specific by Jon E. Schoenfield, Sep 12 2022

A131062 Rounded frequencies of notes in a Pythagorean scale, starting with 260.7 Hertz for a C.

Original entry on oeis.org

261, 293, 330, 348, 391, 440, 495, 521, 587, 660, 695, 782, 880, 990, 1043, 1173, 1320, 1391, 1564, 1760, 1980, 2086
Offset: 1

Views

Author

Hans Isdahl, Sep 24 2007

Keywords

Comments

The approximate value of 260.7 Hz for the C corresponds to 16/27 * 440 Hz. The frequencies correspond to the ratios [1/1, 9/8, 81/64, 4/3, 3/2, 27/16, 243/128, 2/1].

Crossrefs

Cf. A131071 for the same scale including half-tones.
Cf. A071831/A071832 = A071833/24. - M. F. Hasler, Jun 14 2012
Cf. A101285.

Extensions

Value of a(8) corrected, sequence extended to 3 octaves and comments added by M. F. Hasler (following suggestions by Franklin T. Adams-Watters and Charles R Greathouse IV), Oct 05 2011

A101285 Rounded frequencies in Hertz of the notes of the C major music scale beginning at A (A Minor equal-tempered).

Original entry on oeis.org

55, 62, 65, 73, 82, 87, 98, 110, 123, 131, 147, 165, 175, 196, 220, 247, 262, 294, 330, 349, 392, 440, 494, 523, 587, 659, 698, 784, 880, 988, 1047, 1175, 1319, 1397, 1568, 1760, 1976, 2093, 2349, 2637, 2794, 3136, 3520, 3951, 4186, 4699, 5274, 5588, 6272
Offset: 1

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered ("Wohltemperiert"), introduced by Johann Sebastian Bach.
Subsequence of A101286, obtained by removal of the 5 black keys' frequencies in each block of 12 keys. - R. J. Mathar, Mar 12 2008

Crossrefs

Programs

  • Maple
    A101286x := proc(n) 55*2.0^((n-1)/12.0) ; end: A101285x := proc(n) if n >= 8 then 2*A101285x(n-7) ; else A101286x(op(n,[1,3,4,6,8,9,11])) ; fi ; end: A101285 := proc(n) round(A101285x(n)) ; end: seq(A101285(n),n=1..80) ; # R. J. Mathar, Mar 12 2008
  • Mathematica
    Table[Round[55*2^((Floor[3(4k-1)/7]-1)/12)],{k,1,49}] (* Federico Provvedi, Feb 14 2014 *)
  • PARI
    forstep(i = 0, 100, [2, 1, 2, 2, 1, 2, 2], print(round(55*2^(i/12)))) \\ David Wasserman, Mar 17 2008

Formula

From David Wasserman, Mar 17 2008: (Start)
a(7n) = round(55*2^(n-1/6));
a(7n+1) = 55*2^n;
a(7n+2) = round(55*2^(n+1/6));
a(7n+3) = round(55*2^(n+1/4));
a(7n+4) = round(55*2^(n+5/12));
a(7n+5) = round(110*2^(n-5/12));
a(7n+6) = round(110*2^(n-1/3)). (End)
a(n) = round(55*2^(int(3*(4*k-1)/7-1)/12)). - Federico Provvedi, Feb 14 2014

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca) and R. J. Mathar, Mar 08 2007

A101286 Rounded frequencies in Hz of the notes of the chromatic music scale beginning at A.

Original entry on oeis.org

55, 58, 62, 65, 69, 73, 78, 82, 87, 92, 98, 104, 110, 117, 123, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 233, 247, 262, 277, 294, 311, 330, 349, 370, 392, 415, 440, 466, 494, 523, 554, 587, 622, 659, 698, 740, 784, 831, 880, 932, 988, 1047, 1109, 1175
Offset: 1

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered. ("Wohltemperiert", introduced by Johann Sebastian Bach.)

Crossrefs

Programs

Formula

a(1+n) = round(55*2^(n/12)). - R. J. Mathar, Mar 12 2008

Extensions

Corrected by T. D. Noe, Nov 02 2006
More terms from R. J. Mathar, Mar 12 2008

A101287 Rounded frequencies in Hz of the notes of the pentatonic music scale beginning at F#.

Original entry on oeis.org

92, 104, 117, 139, 156, 185, 208, 233, 277, 311, 370, 415
Offset: 0

Views

Author

Angela Johansson (angvi798(AT)student.liu.se), Dec 20 2004

Keywords

Comments

The scale is equal-tempered. ("Wohltemperiert", introduced by Johann Sebastian Bach.)

Crossrefs

Showing 1-6 of 6 results.