cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295078 Numbers n > 1 such that n and sigma(n) have the same smallest and simultaneously largest prime factors.

Original entry on oeis.org

6, 28, 40, 84, 120, 140, 224, 234, 270, 420, 468, 496, 672, 756, 936, 1080, 1120, 1170, 1372, 1488, 1550, 1638, 1782, 1862, 2176, 2340, 2480, 2574, 3100, 3250, 3276, 3360, 3472, 3564, 3724, 3744, 3780, 4116, 4464, 4598, 4650, 4680, 5148, 5456, 5586, 6048, 6200
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

All even perfect numbers are terms.
Conjecture: A007691 (multiply-perfect numbers) is a subsequence.
Note that an odd perfect number (if it exists) would be a counterexample to the conjecture. - Robert Israel, Jan 08 2018
Intersection of A071834 and A295076.
Numbers n such that A020639(n) = A020639(sigma(n)) and simultaneously A006530(n) = A006530(sigma(n)).
Numbers n such that A020639(n) = A071189(n) and simultaneously A006530(n) = A071190(n).
Supersequence of A027598.

Examples

			40 = 2^3*5 and sigma(40) = 90 = 2*3^2*5 hence 40 is in the sequence.
The first odd term is 29713401 = 3^2 * 23^2 * 79^2; sigma(29713401) = 45441669 = 3*7^3*13*43*79.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..10000] | Minimum(PrimeDivisors(n)) eq Minimum(PrimeDivisors(SumOfDivisors(n))) and Maximum(PrimeDivisors(n)) eq Maximum(PrimeDivisors(SumOfDivisors(n)))]
    
  • Maple
    filter:= proc(n) local f, s; uses numtheory;
      f:= factorset(n);
      s:= factorset(sigma(n));
      min(f) = min(s) and max(f)=max(s)
    end proc:
    select(filter, [$2..10^4]); # Robert Israel, Jan 08 2018
  • Mathematica
    Rest@ Select[Range@ 6200, SameQ @@ Map[{First@ #, Last@ #} &@ FactorInteger[#][[All, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    isok(n) = if (n > 1, my(fn = factor(n)[,1], fs = factor(sigma(n))[,1]); (vecmin(fn) == vecmin(fs)) && (vecmax(fn) == vecmax(fs))); \\ Michel Marcus, Jan 08 2018

Extensions

Added condition n>1 to definition. Corrected b-file. - N. J. A. Sloane, Feb 03 2018

A295076 Numbers n > 1 such that n and sigma(n) have the same smallest prime factor.

Original entry on oeis.org

6, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 62, 66, 68, 70, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 130, 132, 134, 136, 138, 140, 142, 146, 148
Offset: 1

Views

Author

Jaroslav Krizek, Nov 13 2017

Keywords

Comments

Supersequence of A088829; this sequence contains also odd numbers: 441, 1521, 3249, 3969, 8649, 11025, ...
Even terms of A000396 (perfect numbers) are a subsequence.
Subsequence of A295078.
Numbers n such that A020639(n) = A020639(sigma(n)).
Numbers n such that A020639(n) = A071189(n).

Examples

			30 = 2*3*5 and sigma(30) = 72 = 2^3*3^2 hence 30 is in the sequence.
		

Crossrefs

Cf. A071834 (numbers n such that n and sigma(n) have the same largest prime factor).

Programs

  • Magma
    [n: n in [2..1000000] | Minimum(PrimeDivisors(SumOfDivisors(n))) eq Minimum(PrimeDivisors(n))]
    
  • Maple
    select(t -> min(numtheory:-factorset(t))=min(numtheory:-factorset(numtheory:-sigma(t))), [$2..1000]); # Robert Israel, Nov 14 2017
  • Mathematica
    Rest@ Select[Range@ 150, SameQ @@ Map[FactorInteger[#][[1, 1]] &, {#, DivisorSigma[1, #]}] &] (* Michael De Vlieger, Nov 13 2017 *)
  • PARI
    isok(n) = factor(n)[1,1] == factor(sigma(n))[1,1]; \\ Michel Marcus, Nov 14 2017

Extensions

Added n>1 to definition - N. J. A. Sloane, Feb 03 2018
Showing 1-2 of 2 results.