cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A003076 n-th digit after decimal point of square root of n.

Original entry on oeis.org

0, 0, 1, 2, 0, 6, 9, 3, 2, 0, 1, 5, 7, 9, 4, 6, 0, 4, 6, 2, 1, 8, 6, 3, 8, 0, 0, 4, 2, 4, 8, 5, 9, 9, 0, 4, 0, 0, 3, 2, 1, 2, 4, 3, 9, 8, 9, 0, 1, 0, 4, 3, 4, 3, 5, 7, 0, 8, 4, 3, 7, 7, 5, 7, 0, 6, 2, 6, 0, 5, 7, 0, 0, 3, 6, 4, 3, 0, 2, 5, 9, 0, 3, 8, 8, 8, 4, 0, 1, 8, 5, 4, 7, 3, 9, 6, 0, 7, 0, 2, 0, 6, 6, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Regarded as a decimal fraction, 0.01206932015794604621863800... is likely to be an irrational number.

Examples

			sqrt(0) = 0.0, so a(0) = 0 with the convention that the 0th digit after the decimal point is the digit before the decimal point,
sqrt(1) = 1.0, where the first digit after the decimal point is a(1) = 0,
sqrt(2) = 1.4142135..., where the 2nd decimal digit is a(2) = 1,
sqrt(3) = 1.7320508..., where the 3rd decimal digit is a(3) = 2,
sqrt(4) = 2.0000000..., where the 4th decimal digit is a(4) = 0,
sqrt(5) = 2.2360679..., where the 5th decimal digit is a(5) = 6,
sqrt(6) = 2.4494897..., where the 6th decimal digit is a(6) = 9, etc.
From _M. F. Hasler_, Jun 22 2024: (Start)
For the frequency of the respective digits among the first 10^k terms, we have:
  k :   0's    1's   2's    3's   4's   5's   6's   7's   8's   9's
----+---------------------------------------------------------------
  1 :     4,     1,    2,     1,    0,    0,    1,    0,    0,    1;
  2 :    22,     6,    9,    11,   12,    7,    8,    8,    9,    8;
  3 :   126,   106,  105,    94,   95,   90,   86,   96,   92,  110;
  4 :  1097,  1026, 1037,  1031,  984,  979, 1000,  956,  922,  968;
  5 : 10320, 10053, 9926, 10122, 9855, 9985, 9934, 9857, 9855, 10093. (End)
		

Crossrefs

Cf. A071901.

Programs

  • Mathematica
    Join[{0}, Array[ Function[ n, RealDigits[ N[ Sqrt[ n ], n+6 ] ]// (#[ [ 1, #[ [ 2 ] ]+n ] ])& ], 110 ]]
    Table[ Floor[ Mod[10^n*Sqrt[n], 10]], {n, 0, 104}] (* Robert G. Wilson v, Jun 17 2002 *)
  • PARI
    A003076(n)=sqrtint(n*100^n)%10;
    apply(A003076, [0..99]) \\ M. F. Hasler, Jun 22 2024

Formula

From M. F. Hasler, Jun 22 2024: (Start)
a(n) = A000196(n*100^n) % 10, where n % 10 = A010879(n) is the final digit of n.
a(n) = 0 for all n in A000290 (but not only those). This explains that the value 0 is slightly more frequent than the other values. (End)

Extensions

Extension and program from Olivier Gérard, Oct 15 1997

A071989 a(n) = n-th decimal digit of the fractional part of the square root of the n-th nonsquare number (A000037).

Original entry on oeis.org

4, 3, 6, 4, 5, 7, 6, 9, 5, 4, 7, 7, 6, 8, 3, 3, 0, 4, 5, 9, 8, 3, 3, 0, 8, 9, 6, 2, 4, 1, 0, 4, 4, 0, 6, 7, 9, 5, 1, 7, 4, 1, 3, 5, 7, 5, 7, 7, 4, 8, 8, 9, 5, 0, 5, 0, 6, 5, 1, 7, 3, 3, 9, 9, 7, 7, 6, 1, 4, 9, 9, 2, 7, 8, 5, 8, 4, 9, 4, 5, 4, 2, 8, 0, 2, 1, 7, 7, 4, 7, 4, 8, 1, 8, 4, 5, 7, 5, 8, 0, 0, 0, 1, 4, 3
Offset: 1

Views

Author

Robert G. Wilson v, Jun 17 2002

Keywords

Comments

Regarded as a decimal fraction, 0.43645769547768330... is likely to be an irrational number.

Examples

			Sqrt(2)=1.4142135... -> the 1st decimal digit is 4,
sqrt(3)=1.7320508... -> the 2nd decimal digit is 3,
sqrt(5)=2.2360679... -> the 3rd decimal digit is 6,
sqrt(6)=2.4494897... -> the 4th decimal digit is 4, etc.
		

References

  • Martin Aigner & Günter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin Heidelberg NY, Section of Analysis, Chptr 15, "Sets, function, and the continuum hypothesis", 2000, pp. 87-98.
  • Georg Cantor, Über eine Eigenschaft des Inbegriffes aller reellen Zahlen ("On the Characteristic Property of All Real Numbers").
  • Timothy Gowers, Editor, with June Barrow-Green & Imre Leader, Assc. Editors, The Princeton Companion to Mathematics, Princeton Un. Press, Princeton & Oxford, 2008, pp. 171 & 779.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §7.5 Transfinite Numbers, pp. 257-262.

Crossrefs

Programs

  • Mathematica
    q[n_] := (m = Floor[n + Sqrt[n + Sqrt[n]]]; Floor[ Mod[ 10^n*Sqrt[m], 10]]); Table[ q[n], {n, 1, 105}]
  • Python
    from math import isqrt
    def A071989(n): return isqrt(10**(n<<1)*(n+(k:=isqrt(n))+int(n>=k*(k+1)+1)))%10 # Chai Wah Wu, Jul 20 2024

Formula

a(n) = floor(sqrt(A000037(n))*10^n) mod 10. - Jason Yuen, Aug 20 2024

A111422 a(n) = n-th decimal digit of the fractional part of the cube root of the n-th prime.

Original entry on oeis.org

2, 4, 9, 9, 8, 4, 5, 4, 9, 6, 9, 5, 7, 2, 4, 0, 4, 5, 0, 0, 6, 3, 7, 8, 4, 6, 7, 9, 3, 6, 7, 7, 8, 2, 5, 9, 0, 6, 1, 8, 8, 8, 3, 9, 1, 6, 6, 9, 9, 9, 4, 4, 3, 7, 7, 2, 4, 4, 7, 6, 7, 1, 8, 4, 6, 6, 9, 0, 6, 5, 7, 9, 8, 9, 7, 5, 2, 4, 5, 1, 7, 0, 9, 4, 7, 0, 6, 3, 1, 7, 3, 9, 3, 7, 0, 9, 4, 0, 9, 7, 0, 9, 7, 2, 0
Offset: 2

Views

Author

Cino Hilliard, Nov 13 2005

Keywords

Examples

			The 2nd prime is 3. 3^(1/3) = 1.442249..., The 2nd entry after the decimal point is 4 the 2nd entry in the table.
		

References

  • John D. Barrow, The Infinite Book, Pantheon Book New York 2005, pp. 69-76.

Crossrefs

Cf. A071901.

Programs

  • Mathematica
    a[n_] := Block[{rd = RealDigits[(Prime@n)^(1/3), 10, 111]}, rd[[1, n + rd[[2]]]]];
    Array[a, 105] (* Robert G. Wilson v, Nov 17 2005 *)
  • PARI
    a(n) = localprec(n+1); floor(frac(sqrtn(prime(n), 3))*10^n) % 10; \\ Michel Marcus, Feb 22 2024

Extensions

More terms from Robert G. Wilson v, Nov 17 2005

A111421 a(n) = n-th decimal digit + 1 of the fractional part formed by the square root of the n-th prime.

Original entry on oeis.org

5, 4, 7, 8, 3, 2, 7, 5, 4, 2, 4, 9, 9, 1, 5, 3, 8, 5, 0, 4, 2, 5, 3, 1, 5, 2, 9, 7, 5, 0, 9, 9, 2, 5, 4, 5, 1, 9, 5, 2, 1, 3, 9, 7, 4, 3, 4, 8, 5, 8, 7, 7, 3, 6, 1, 2, 3, 4, 2, 4, 8, 5, 5, 8, 8, 5, 4, 7, 0, 7, 2, 3, 2, 0, 9, 0, 5, 3, 0, 0, 4, 6, 7, 0, 1, 5, 0, 4, 9, 7, 0, 7, 4, 7, 5, 3, 7, 4, 6, 0, 4, 8, 9, 0, 7
Offset: 2

Views

Author

Cino Hilliard, Nov 12 2005

Keywords

Comments

Also a Cantor diagonal proving the irrational numbers are a non-denumerable infinite set. Also A071901(n)+ 1.

Examples

			The 2nd prime is 3. Sqrt(3) = 1.7320508..., The 2nd entry after the decimal point is 3 and 3+1=4, the 2nd entry in the table.
		

References

  • John D. Barrow, The Infinite Book, Pantheon Book New York 2005, pp. 69-76.

Crossrefs

Cf. A071901.

Programs

  • Mathematica
    f[n_] := Block[{rd = RealDigits[ Sqrt@Prime@n, 10, 111]}, Mod[rd[[1, n + rd[[2]]]] + 1, 10]]; Array[f, 105] (* Robert G. Wilson v, Nov 17 2005 *)
  • PARI
    a(n) = localprec(n+1); (floor(frac(sqrt(prime(n)))*10^n)+1) % 10; \\ Michel Marcus, Feb 22 2024

Extensions

More terms from Robert G. Wilson v, Nov 17 2005

A111423 a(n) = n-th decimal digit of the fractional part formed by the 4th root of the n-th prime.

Original entry on oeis.org

1, 1, 5, 5, 6, 8, 1, 2, 3, 1, 7, 9, 2, 1, 5, 5, 0, 3, 4, 3, 4, 7, 5, 0, 1, 3, 4, 4, 5, 0, 8, 1, 1, 0, 3, 1, 3, 6, 6, 0, 9, 0, 9, 4, 8, 6, 4, 0, 8, 1, 0, 1, 7, 7, 2, 9, 9, 6, 9, 5, 6, 0, 6, 1, 1, 1, 1, 4, 4, 0, 6, 9, 9, 4, 6, 6, 3, 9, 2, 4, 8, 9, 3, 5, 2, 5, 0, 7, 8, 4, 8, 8, 6, 2, 8, 6, 0, 6, 9, 0, 6, 1, 8, 6, 5
Offset: 1

Views

Author

Cino Hilliard, Nov 13 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{rd = RealDigits[Sqrt@Sqrt@Prime@n, 10, 111]}, rd[[1, n + rd[[2]] ]]];
    Array[a, 105] (* Robert G. Wilson v, Nov 17 2005 *)
  • PARI
    a(n) = localprec(n+1); floor(frac(sqrtn(prime(n), 4))*10^n) % 10; \\ Michel Marcus, Feb 22 2024

Extensions

More terms from Robert G. Wilson v, Nov 17 2005

A178903 n-th decimal digit of the fractional part of the square root of the n-th semiprime.

Original entry on oeis.org

0, 4, 0, 2, 5, 3, 6, 5, 0, 5, 3, 5, 6, 7, 8, 1, 0, 7, 7, 3, 1, 0, 1, 2, 5, 0, 6, 7, 9, 0, 2, 6, 3, 2, 7, 6, 0, 2, 5, 0, 7, 6, 7, 5, 2, 6, 7, 7, 8, 0, 9, 7, 7, 0, 7, 0, 3, 1, 2, 7, 5, 4, 0, 5, 6, 7, 3, 7, 5, 1, 1, 8, 9, 5, 1, 7, 1, 9, 7, 9, 1, 9, 2, 9, 4, 0, 2, 1, 5, 0, 4, 8, 8, 8, 5, 8, 7, 5, 6, 5, 1, 5, 9, 0, 4
Offset: 1

Views

Author

Jonathan Vos Post, Jun 22 2010

Keywords

Comments

This is to semiprimes A001358 as A071901 is to prime A000040. Regarded as a decimal fraction, 0.0402536505356781... is likely to be an irrational number.

Examples

			semiprime(1) = 4, sqrt(4) = 2.000, first digit of fractional part is 0, so a(1) = 0.
semiprime(2) = 6, sqrt(6) = 2.449, 2nd digit of fractional part is 4, so a(2) = 4.
semiprime(3) = 9, sqrt(9) = 3.000, 3rd digit of fractional part is 0, so a(3) = 0.
semiprime(4) = 10, sqrt(10) = 3.162277, 4th digit of fractional part is 2, so a(4) = 2.
semiprime(5) = 14, sqrt(14) = 3.741657, 5th digit of fractional part is 5, so a(5) = 5.
semiprime(6) = 15, sqrt(15) = 3.8729833, 6th digit of fractional part is 3, so a(6) = 3 semiprime(7) = 21, sqrt(21) = 4.58257569, 7th digit of fractional part is 6, so a(6) = 6.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimePi[n_] := Sum[ PrimePi[n/Prime@i] - i + 1, {i, PrimePi@ Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[ Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[ SemiPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; f[n_] := Mod[ Floor@ N[10^n*Sqrt@ SemiPrime@n, n + 10], 10]; Array[f, 111] (* Robert G. Wilson v, Jul 31 2010 *)

Extensions

a(16) onwards from Robert G. Wilson v, Jul 31 2010
Showing 1-6 of 6 results.