A071901 n-th decimal digit of the fractional part of the square root of the n-th prime.
4, 3, 6, 7, 2, 1, 6, 4, 3, 1, 3, 8, 8, 0, 4, 2, 7, 4, 9, 3, 1, 4, 2, 0, 4, 1, 8, 6, 4, 9, 8, 8, 1, 4, 3, 4, 0, 8, 4, 1, 0, 2, 8, 6, 3, 2, 3, 7, 4, 7, 6, 6, 2, 5, 0, 1, 2, 3, 1, 3, 7, 4, 4, 7, 7, 4, 3, 6, 9, 6, 1, 2, 1, 9, 8, 9, 4, 2, 9, 9, 3, 5, 6, 9, 0, 4, 9, 3, 8, 6, 9, 6, 3, 6, 4, 2, 6, 3, 5, 9, 3, 7, 8, 9, 6
Offset: 1
Examples
sqrt(2)=1.4142135... -> the 1st decimal digit is 4; sqrt(3)=1.7320508... -> the 2nd decimal digit is 3; sqrt(5)=2.2360679... -> the 3rd decimal digit is 6, etc.
References
- Bryan Birch, Mathematical Fallacies and Paradoxes, Dover 1982; suggested by pages 120,121 and 122
Crossrefs
Cf. A003076.
Programs
-
Maple
A071901 := proc(n) local p; p := ithprime(n) ; Digits := p+3 ; floor(10^n*sqrt(p)) mod 10 ; end proc: seq(A071901(n),n=1..120) ; # R. J. Mathar, Nov 17 2009
-
Mathematica
q[n_] := Mod[ Floor[10^n*Sqrt[ Prime[n]]], 10]; Table[ q[n], {n, 1, 105}] Table[rd=RealDigits[N[Sqrt[Prime[n]],2*n]]; rd[[1,rd[[2]]+n]],{n,10000,100000,10000}] (* Zak Seidov, Nov 17 2009 *) ndd[n_]:=Module[{rd=RealDigits[Sqrt[Prime[n]],10,Prime[n]]}, Drop[ rd[[1]], rd[[2]]][[n]]]; Array[ndd,110]
-
PARI
A071901(n) = {local(r,x,d);r=sqrtint(prime(n));x=100*(prime(n)-r^2); for(digits=1, n, d=0; while((20*r+d)*d <= x, d++); d--; /* while loop overshoots correct digit */ x=100*(x-(20*r+d)*d); r=10*r+d); d} \\ Michael B. Porter, Dec 11 2009
Formula
a(n) = floor(10^n*sqrt(prime(n)))-10*floor(10^(n-1)*sqrt(prime(n))).
Extensions
Edited by Robert G. Wilson v and Henry Bottomley, Jun 13 2002
Comments