A071924 Highest m such that prime(m) divides the n-th pandigital (A050278).
749, 208, 6503705, 1831, 657, 1045880, 6503711, 239879, 375325, 7864, 45075, 7064, 2313602, 6503717, 59, 1766468, 78975, 840, 1046, 33355, 2133, 109, 107390, 56057, 6503758, 3386573, 6503759, 2044, 3386575, 158964, 2313623, 9463, 2313625, 36081
Offset: 1
Examples
The 10th pandigital 1023457896 has prime decomposition 2^3*3^3*59*80309 and 80309 is indeed the a(10)=7864th prime, i.e., prime(7864)=80309.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A050278.
Programs
-
Mathematica
PrimePi[FactorInteger[#][[-1,1]]]&/@(Select[Sort[FromDigits/@ Permutations[ Range[0,9]]],IntegerLength[#]>9&,50]) (* Harvey P. Dale, Jun 06 2018 *)
-
Python
from itertools import permutations, islice from sympy import primepi, primefactors def A071924(n): return primepi(max(primefactors(next(islice((int(e+''.join(d)) for e in '123456789' for d in permutations('0123456789'.replace(e,''),9)),n-1,None))))) # Chai Wah Wu, Dec 07 2021
Extensions
a(24)-a(33) from Donovan Johnson, Jan 25 2009
Edited by Charles R Greathouse IV, Aug 02 2010
Keyword "fini" added by Sean A. Irvine, Aug 21 2024