cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071930 Number of words of length 2n in the two letters s and t that reduce to the identity 1 by using the relations ssTT=1, ststSS=1 and ststTT=1, where S and T are the inverses of s and t, respectively (i.e., sS=1 and tT=1). The generators s and t and the three stated relations generate the quaternion group Q4.

Original entry on oeis.org

0, 6, 12, 72, 240, 1056, 4032, 16512, 65280, 262656, 1047552, 4196352, 16773120, 67117056, 268419072, 1073774592, 4294901760, 17180000256, 68719214592, 274878431232, 1099510579200, 4398048608256, 17592181850112
Offset: 1

Views

Author

John W. Layman and Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com), Jun 14 2002

Keywords

Comments

a(n) = A003683(n+1)/6. No words of odd length (see the description above) reduce to 1.

Crossrefs

Programs

  • Magma
    [4^(n-1)-(-2)^(n-1): n in [1..40]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    Table[2^(2n-2)-(-2)^(n-1),{n,30}] (* or *) LinearRecurrence[{2,8},{0,6},30] (* Harvey P. Dale, Dec 10 2012 *)
  • SageMath
    [4^(n-1)-(-2)^(n-1) for n in range(1,41)] # G. C. Greubel, Feb 17 2023

Formula

a(n) = 2^(2*n-2) - (-2)^(n-1) = 6*A003683(n-1).
From Harvey P. Dale, Dec 10 2012: (Start)
a(n) = 2*a(n-1) + 8*a-(n-2).
G.f.: 6*x^2/(1-2*x-8*x^2). (End)
G.f.: Q(0), where Q(k)= 1 - 1/(4^k - 4*x*16^k/(4*x*4^k - 1/(1 + 1/(2*4^k - 16*x*16^k/(8*x*4^k +1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) = 2*A003674(n-1). - G. C. Greubel, Feb 17 2023