A071930 Number of words of length 2n in the two letters s and t that reduce to the identity 1 by using the relations ssTT=1, ststSS=1 and ststTT=1, where S and T are the inverses of s and t, respectively (i.e., sS=1 and tT=1). The generators s and t and the three stated relations generate the quaternion group Q4.
0, 6, 12, 72, 240, 1056, 4032, 16512, 65280, 262656, 1047552, 4196352, 16773120, 67117056, 268419072, 1073774592, 4294901760, 17180000256, 68719214592, 274878431232, 1099510579200, 4398048608256, 17592181850112
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,8).
Programs
-
Magma
[4^(n-1)-(-2)^(n-1): n in [1..40]]; // G. C. Greubel, Feb 17 2023
-
Mathematica
Table[2^(2n-2)-(-2)^(n-1),{n,30}] (* or *) LinearRecurrence[{2,8},{0,6},30] (* Harvey P. Dale, Dec 10 2012 *)
-
SageMath
[4^(n-1)-(-2)^(n-1) for n in range(1,41)] # G. C. Greubel, Feb 17 2023
Formula
a(n) = 2^(2*n-2) - (-2)^(n-1) = 6*A003683(n-1).
From Harvey P. Dale, Dec 10 2012: (Start)
a(n) = 2*a(n-1) + 8*a-(n-2).
G.f.: 6*x^2/(1-2*x-8*x^2). (End)
G.f.: Q(0), where Q(k)= 1 - 1/(4^k - 4*x*16^k/(4*x*4^k - 1/(1 + 1/(2*4^k - 16*x*16^k/(8*x*4^k +1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 21 2013
a(n) = 2*A003674(n-1). - G. C. Greubel, Feb 17 2023
Comments