cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003674 a(n) = 2^(n-1)*(2^n - (-1)^n).

Original entry on oeis.org

0, 3, 6, 36, 120, 528, 2016, 8256, 32640, 131328, 523776, 2098176, 8386560, 33558528, 134209536, 536887296, 2147450880, 8590000128, 34359607296, 137439215616, 549755289600, 2199024304128, 8796090925056
Offset: 0

Views

Author

Keywords

References

  • M. Gardner, Riddles of the Sphinx, New Mathematical Library, M.A.A., 1987, p. 145. Math. Rev. 89i:00015.

Crossrefs

Cf. A001045, A003683 (one-third), A062510, A071930.

Programs

  • Magma
    [(4^n -(-2)^n)/2: n in [0..40]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    Table[(4^n-(-2)^n)/2, {n,0,40}] (* G. C. Greubel, Feb 17 2023 *)
  • PARI
    a(n)=if(n<0,0,2^(n-1)*(2^n-(-1)^n))
    
  • SageMath
    [(4^n-(-2)^n)/2 for n in range(41)] # G. C. Greubel, Feb 17 2023

Formula

G.f.: 3*x/((1+2*x)*(1-4*x)).
a(n) = 3*A003683(n).
Given the 2 X 2 matrix M = [1,3; 3,1], a(n) = term (1,2) in M^n, n>0. - Gary W. Adamson, Aug 06 2010
From G. C. Greubel, Feb 17 2023: (Start)
a(n) = 2*a(n-1) + 8*a(n-2).
a(n) = 3*2^(n-1)*A001045(n).
a(n) = 2^(n-1)*A062510(n).
a(n) = (1/2)*A071930(n+1).
E.g.f.: (1/2)*(exp(4*x) - exp(-2*x)). (End)

A377885 Cogrowth sequence of the 16-element quasihedral group SD16 = .

Original entry on oeis.org

1, 1, 1, 4, 28, 136, 544, 2080, 8128, 32512, 130816, 524800, 2099200, 8390656, 33550336, 134201344, 536854528, 2147516416, 8590065664, 34359869440, 137438691328, 549754765312, 2199022206976, 8796095119360, 35184380477440, 140737496743936, 562949936644096
Offset: 0

Views

Author

Sean A. Irvine, Nov 10 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.
Also called QD16, Q8:C2. Gap identifier 16,8.

Crossrefs

Cf. A047849 (D4), A007582 (D8), A071930 (Q8), A377840 (C8 X C2), A377883 (M4(2)).

Formula

G.f.: (6*x^3-7*x^2+5*x-1) / ((4*x-1) * (4*x^2-2*x+1)).

A279260 Numbers which are cyclops palindromic in their binary reflected Gray code representation.

Original entry on oeis.org

0, 6, 18, 90, 330, 1386, 5418, 21930, 87210, 349866, 1397418, 5593770, 22366890, 89483946, 357903018, 1431677610, 5726579370, 22906579626, 91625794218, 366504225450, 1466014804650, 5864063412906, 23456245263018, 93824997829290, 375299957762730, 1501199898159786, 6004799458421418
Offset: 0

Views

Author

Indranil Ghosh, Jan 17 2017

Keywords

Comments

Cyclops palindromic numbers in base 2 are numbers with middle bit 0, having equal number of 1's on both side of the 0. There is a single 0 bit in the middle and the total number of bits is odd. The middle '0' represents the eye of a cyclops.
a(n) mod 6 = 0.

Examples

			90 is in the sequence because the binary reflected Gray code representation of 90 is '1110111' which is a cyclops palindromic binary number.
		

Crossrefs

Partial sums of A071930.

Programs

  • PARI
    a(n)=(-2*(1+((-2)^n)-(2^(2*n+1))))/3 \\ Charles R Greathouse IV, Jun 29 2018
  • Python
    def a(n):
        return (-2*(1+((-2)**n)-(2**(2*n+1))))/3
    

Formula

a(n) = (-2*(1+((-2)^n)-(2^(2*n+1))))/3.

A377735 Cogrowth sequence of the 16-element group Q8 X C2 = .

Original entry on oeis.org

1, 1, 7, 103, 829, 7261, 66595, 598627, 5377849, 48426745, 435876607, 3922582687, 35303534581, 317733991381, 2859598948507, 25736384863003, 231627537879409, 2084647743751921, 18761829221081335, 168856464809568727, 1519708183900618669, 13677373637498037325
Offset: 0

Views

Author

Sean A. Irvine, Nov 10 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.

Crossrefs

Cf. A047854 (D4 X C2), A377840 (C8 X C2), A071930 (Q8).

Formula

G.f.: (27*x^3+3*x^2+7*x-1) / ((1-x) * (9*x-1) * (9*x^2+2*x+1)).

A377944 Cogrowth sequence of the 16-element dicyclic group Q16 = .

Original entry on oeis.org

1, 0, 1, 12, 28, 120, 544, 2016, 8128, 33024, 130816, 523776, 2099200, 8386560, 33550336, 134234112, 536854528, 2147450880, 8590065664, 34359607296, 137438691328, 549756862464, 2199022206976, 8796090925056, 35184380477440, 140737479966720, 562949936644096
Offset: 0

Views

Author

Sean A. Irvine, Nov 11 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.
Also called Dic16, C8:C2. Gap identifier 16, 9.

Crossrefs

Cf. A071930 (Q8), A377656 (Dic12), A377735 (Q8 X C2), A377840 (C8 X C2), A007582 (D8), A377885 (SD16), A377883 (M4(2)).

Formula

G.f.: (6*x^3+3*x^2+2*x-1) / ((4*x-1) * (4*x^2+2*x+1)).
Showing 1-5 of 5 results.