A071986 Parity of the prime-counting function pi(n).
0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1
Offset: 1
Examples
a(6)=1 since three primes [2,3,5] are <= 6 and three is odd.
Links
- Henri Lifchitz, Parity of Pi(n)
- Terence Tao et al., Prime counting function, Polymath1 project (2009)
- Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes, Math. Comp. 81 (2012), 1233-1246; arXiv:1009.3956, [math.NT], 2010-2012.
Programs
-
Magma
[#PrimesUpTo(n) mod 2: n in [1..200]]; // Vincenzo Librandi, Jul 21 2019
-
Mathematica
Table[Mod[PrimePi[w], 2], {w, 1, 256}]
-
PARI
a(n)=primepi(n)%2
-
PARI
sq(n)=if (n<6, return(max(n-1,0))); my(s,t); forsquarefree(i=1, sqrtint(n), t=n\i[1]^2; s+=moebius(i)*sum(i=1,sqrtint(t), t\i)); s; a(n)=my(s); forsquarefree(i=1,logint(n,2), s+=moebius(i)*sq(sqrtnint(n,i[1]))); s%2 \\ Charles R Greathouse IV, Jan 09 2018
Formula
a(n) = pi(n) mod 2.
a(n) = Sum_{d|n} A345219(d) * mu(n/d). - Wesley Ivan Hurt, Jul 05 2025
Extensions
Edited by Charles R Greathouse IV, Feb 19 2011
Comments