A072030 Array read by antidiagonals: T(n,k) = number of steps in simple Euclidean algorithm for gcd(n,k) where n >= 1, k >= 1.
1, 2, 2, 3, 1, 3, 4, 3, 3, 4, 5, 2, 1, 2, 5, 6, 4, 4, 4, 4, 6, 7, 3, 4, 1, 4, 3, 7, 8, 5, 2, 5, 5, 2, 5, 8, 9, 4, 5, 3, 1, 3, 5, 4, 9, 10, 6, 5, 5, 6, 6, 5, 5, 6, 10, 11, 5, 3, 2, 5, 1, 5, 2, 3, 5, 11, 12, 7, 6, 6, 5, 7, 7, 5, 6, 6, 7, 12, 13, 6, 6, 4, 6, 4, 1, 4, 6, 4, 6, 6, 13, 14, 8, 4, 6, 2, 3, 8, 8, 3, 2, 6, 4, 8, 14
Offset: 1
Examples
The array begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ... 3, 3, 1, 4, 4, 2, 5, 5, 3, 6, ... 4, 2, 4, 1, 5, 3, 5, 2, 6, 4, ... 5, 4, 4, 5, 1, 6, 5, 5, 6, 2, ... 6, 3, 2, 3, 6, 1, 7, 4, 3, 4, ... 7, 5, 5, 5, 5, 7, 1, 8, 6, 6, ... 8, 4, 5, 2, 5, 4, 8, 1, 9, 5, ... 9, 6, 3, 6, 6, 3, 6, 9, 1, 10, ... 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, ... ... The first few antidiagonals are: 1; 2, 2; 3, 1, 3; 4, 3, 3, 4; 5, 2, 1, 2, 5; 6, 4, 4, 4, 4, 6; 7, 3, 4, 1, 4, 3, 7; 8, 5, 2, 5, 5, 2, 5, 8; 9, 4, 5, 3, 1, 3, 5, 4, 9; 10, 6, 5, 5, 6, 6, 5, 5, 6, 10; ...
Links
- T. D. Noe, Antidiagonals 1..49, flattened
- James C. Alexander, The Entropy of the Fibonacci Code (1989).
Crossrefs
Programs
-
Maple
A072030 := proc(n,k) option remember; if n < 1 or k < 1 then 0; elif n = k then 1 ; elif n < k then procname(k,n) ; else 1+procname(k,n-k) ; end if; end proc: seq(seq(A072030(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, May 07 2016 # second Maple program: A:= (n, k)-> add(i, i=convert(k/n, confrac)): seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Jan 31 2023
-
Mathematica
T[n_, k_] := T[n, k] = Which[n<1 || k<1, 0, n==k, 1, n
Jean-François Alcover, Nov 21 2016, adapted from PARI *) -
PARI
T(n, k) = if( n<1 || k<1, 0, if( n==k, 1, if( n
Extensions
Definition and Comments revised by N. J. A. Sloane, Jan 14 2016
Comments