A072048 Number of divisors of the squarefree numbers: tau(A005117(n)).
1, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 2, 2, 8, 2, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 8, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 2, 8, 4, 2
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- B. Gordon and K. Rogers, Sums of the divisor function, Canadian Journal of Mathematics, Vol. 16 (1964), pp. 151-158.
Programs
-
Haskell
a072048 = (2 ^) . a072047 -- Reinhard Zumkeller, Dec 13 2015
-
Maple
A072048:=n->`if`(numtheory[issqrfree](n) = true, numtheory[tau](n), NULL); seq(A072048(k), k=1..100); # Wesley Ivan Hurt, Oct 13 2013
-
Mathematica
DivisorSigma[0, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 29 2022 *)
-
Python
from math import isqrt from sympy import mobius, divisor_count def A072048(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return divisor_count(m) # Chai Wah Wu, Aug 12 2024
Formula
Sum_{k=1..n} a(k) ~ A * n * log(n) + B * n + O(n^(1/2+eps)), where A = A065473, B = A * ((2*gamma-1) + 6 * Sum_{p prime} (p-1)*log(p)/(p^2*(p+2)) = 0.236184..., and gamma = A001620 (Gordon and Rogers, 1964). - Amiram Eldar, Oct 29 2022
Comments