cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A072047 Number of prime factors of the squarefree numbers: omega(A005117(n)).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 3, 1, 3, 2, 1, 1, 3, 2, 1, 3, 2, 2, 2, 2, 2, 1, 2, 3, 1, 2, 2, 1, 3, 1, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 09 2002

Keywords

Comments

For n > 1: length of row n in A265668. - Reinhard Zumkeller, Dec 13 2015

Crossrefs

Programs

  • Haskell
    a072047 n = a072047_list !! (n-1)
    a072047_list = map a001221 $ a005117_list
    -- Reinhard Zumkeller, Aug 08 2011
    
  • Mathematica
    PrimeOmega[Select[Range[200],SquareFreeQ]] (* Harvey P. Dale, May 14 2011 *)
  • PARI
    apply(omega, select(issquarefree, [1..200])) \\ Michel Marcus, Nov 25 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, primenu
    def A072047(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return primenu(bisection(f)) # Chai Wah Wu, Aug 31 2024

Formula

a(n) = A001221(A005117(n)) = A001222(A005117(n)).
Sum_{A005117(k) <= x} a(k) = (1/zeta(2))*x*log(log(x)) + O(x) (Jakimczuk and Lalín, 2022). - Amiram Eldar, Feb 18 2023, corrected Sep 21 2024

A124859 Multiplicative with p^e -> primorial(e), p prime and e > 0.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 10 2006

Keywords

Examples

			From _Michael De Vlieger_, Mar 06 2017: (Start)
a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.
a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.
a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.
a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.
a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.
a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.
(End)
		

Crossrefs

Programs

  • Maple
    A124859 := proc(n)
        local a,pf;
        a := 1;
        for pf in ifactors(n)[2] do
            a := a*A002110(pf[2]) ;
        end do:
        a ;
    end proc:
    seq(A124859(n),n=1..80) ; # R. J. Mathar, Oct 06 2017
  • Mathematica
    Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = prod(j=1, f[k,2], prime(j)); f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 16 2015
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import factorint, primorial, primefactors
    from operator import mul
    def omega(n): return 0 if n==1 else len(primefactors(n))
    def a(n):
        f=factorint(n)
        return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
    

Formula

a(A000040(x)^n) = A002110(n); a(A002110(n)) = A000079(n);
a(A005117(n)) = 2^A001221(A005117(n)) = A072048(n);
A001221(a(n)) = A051903(n); A001222(a(n)) = A001222(n).
From Antti Karttunen, Mar 06 2017: (Start)
a(1) = 1, for n > 1, a(n) = A002110(A067029(n)) * a(A028234(n)).
a(n) = A278159(A156552(n)).
a(A278159(n)) = A278222(n).
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
A181819(a(n)) = A238745(n). [after Matthew Vandermast's formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023

A366438 The number of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 4, 4, 2, 8, 2, 6, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 2, 4, 2, 8, 4, 8, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 8, 2, 4, 4, 4, 4, 12, 2, 2, 8, 2, 8, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Comments

1 is the only odd term in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366438_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e&1 for e in f):
                yield prod(e+1 for e in f)
    A366438_list = list(islice(A366438_gen(),30)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A268335(n)).

A358040 a(n) is the number of divisors of the n-th cubefree number.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 3, 4, 2, 6, 2, 4, 4, 2, 6, 2, 6, 4, 4, 2, 3, 4, 6, 2, 8, 2, 4, 4, 4, 9, 2, 4, 4, 2, 8, 2, 6, 6, 4, 2, 3, 6, 4, 6, 2, 4, 4, 4, 2, 12, 2, 4, 6, 4, 8, 2, 6, 4, 8, 2, 2, 4, 6, 6, 4, 8, 2, 4, 2, 12, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 2, 6, 6, 9, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 29 2022

Keywords

Comments

The analogous sequence with squarefree numbers is A072048.

Crossrefs

Cf. A000005, A001620 (gamma), A004709, A072048, A073002 (-zeta'(2)), A147533 (2*gamma-1), A358039.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[100], Max[FactorInteger[#][[;;, 2]]] < 3 &]]
  • Python
    from sympy import mobius, integer_nthroot, divisor_count
    def A358040(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return divisor_count(m) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A000005(A004709(n)).
Sum_{k=1..n} a(k) = (36*c_1/Pi^4) * n * (log(n) + (2*gamma - 1) - 24*zeta'(2)/Pi^2 - 4*c_2) + O(n^(1/2 + eps)), where c_1 = Product_{p prime} ((p^2+2*p+3)/(p+1)^2) = 1.58095136661854869148023... and c_2 = Sum_{p prime} p*log(p)/((p+1)*(p^2+2*p+3)) = 0.229224... (Weiyi, 2004).

A363194 Number of divisors of the n-th powerful number A001694(n).

Original entry on oeis.org

1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 12, 5, 9, 12, 3, 4, 8, 15, 3, 9, 12, 16, 9, 6, 9, 18, 3, 15, 4, 3, 12, 15, 20, 9, 9, 12, 10, 3, 21, 5, 20, 12, 9, 7, 15, 18, 3, 24, 27, 3, 12, 18, 16, 11, 9, 12, 24, 9, 9, 25, 12, 4, 12, 3, 12, 9, 9, 18, 21, 3, 28, 27, 36, 3, 15
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363195.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(numdiv, select(ispowerful, [1..3000]))
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363194_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>1 for e in f):
                yield prod(e+1 for e in f)
    A363194_list = list(islice(A363194_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A001694(n)).
Sum_{A001694(k) < x} a(k) = c_1 * sqrt(x) * log(x)^2 + c_2 * sqrt(x) * log(x) + c_3 * sqrt(x) + O(x^(5/12 + eps)), where c_1, c_2 and c_3 are constants. c_1 = Product_{p prime} (1 + 4/p^(3/2) - 1/p^2 - 6/p^(5/2) + 2/p^(7/2))/8 = 0.516273682988566836609... . [corrected Sep 21 2024]
a(n) = A343443(A306458(n)). - Amiram Eldar, Sep 01 2023

A366536 The number of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_count
    from sympy import mobius, integer_nthroot
    def A366536(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_count(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034444(A004709(n)).

A363195 Number of divisors of the n-th cubefull number A036966(n).

Original entry on oeis.org

1, 4, 5, 4, 6, 7, 5, 4, 8, 16, 6, 9, 4, 20, 10, 5, 20, 7, 24, 16, 11, 25, 4, 28, 24, 20, 12, 8, 4, 5, 30, 16, 6, 16, 32, 30, 24, 13, 4, 20, 35, 20, 28, 9, 4, 36, 36, 28, 14, 16, 25, 20, 40, 16, 24, 35, 4, 40, 5, 42, 7, 32, 15, 6, 20, 32, 16, 20, 10, 30, 45, 20
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363194.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[25000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, print1(numdiv(k), ", ")));
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363195_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>2 for e in f):
                yield prod(e+1 for e in f)
    A363195_list = list(islice(A363195_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A036966(n)).
Sum_{A036966(k) < x} a(k) = c_1 * x^(1/3) * log(x)^3 + c_2 * x^(1/3) * log(x)^2 + c_3 * x^(1/3) * log(x) + c_4 * x^(1/3) + O(x^(7/24 + eps)), where c_1, c_2, c_3 and c_4 are constants. c_1 = Product_{p prime} ((1-1/p)^4 * (1 + 1/((p^(1/3) - 1)^2*p^(1/3)) + 3/(p-p^(2/3))))/162 = 0.1346652397135839416... . [corrected Sep 21 2024]

A073245 Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.

Original entry on oeis.org

1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2002

Keywords

Examples

			14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
		

Crossrefs

Programs

  • Mathematica
    Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, divisor_sigma
    def A073245(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023

A366441 The number of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = numdiv((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_count
    def A366441(n): return divisor_count((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A007310(n)).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1 + 2*log(6)) * n / 3, where gamma is Euler's constant (A001620).
Showing 1-9 of 9 results.