cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A354359 Dirichlet inverse of A124859.

Original entry on oeis.org

1, -2, -2, -2, -2, 4, -2, -14, -2, 4, -2, 4, -2, 4, 4, -110, -2, 4, -2, 4, 4, 4, -2, 28, -2, 4, -14, 4, -2, -8, -2, -1526, 4, 4, 4, 4, -2, 4, 4, 28, -2, -8, -2, 4, 4, 4, -2, 220, -2, 4, 4, 4, -2, 28, 4, 28, 4, 4, -2, -8, -2, 4, 4, -20858, 4, -8, -2, 4, 4, -8, -2, 28, -2, 4, 4, 4, 4, -8, -2, 220, -110, 4, -2, -8
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2022

Keywords

Comments

Multiplicative because A124859 is.

Crossrefs

Programs

  • PARI
    A124859(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1); factorback(f); }; \\ From A124859
    memoA354359 = Map();
    A354359(n) = if(1==n,1,my(v); if(mapisdefined(memoA354359,n,&v), v, v = -sumdiv(n,d,if(dA124859(n/d)*A354359(d),0)); mapput(memoA354359,n,v); (v)));

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d < n} A124859(n/d) * a(d).

A354358 Möbius transform of A124859.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 24, 4, 1, 1, 4, 1, 1, 1, 180, 1, 4, 1, 4, 1, 1, 1, 24, 4, 1, 24, 4, 1, 1, 1, 2100, 1, 1, 1, 16, 1, 1, 1, 24, 1, 1, 1, 4, 4, 1, 1, 180, 4, 4, 1, 4, 1, 24, 1, 24, 1, 1, 1, 4, 1, 1, 4, 27720, 1, 1, 1, 4, 1, 1, 1, 96, 1, 1, 4, 4, 1, 1, 1, 180, 180, 1, 1, 4, 1, 1, 1, 24, 1, 4, 1, 4, 1, 1, 1, 2100
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2022

Keywords

Comments

Multiplicative because A124859 is.

Crossrefs

Programs

  • Mathematica
    primorial[n_] := Product[Prime[i], {i, 1, n}]; primorial[0] = 1; f[p_, e_] := primorial[e] - primorial[e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 07 2023 *)
  • PARI
    A124859(n) = { my(f=factor(n)); for(k=1, #f~, f[k, 1] = prod(j=1, f[k, 2], prime(j)); f[k, 2] = 1); factorback(f); }; \\ From A124859
    A354358(n) = sumdiv(n,d,moebius(n/d)*A124859(d));

Formula

a(n) = Sum_{d|n} A008683(n/d) * A124859(d).
Multiplicative with a(p^e) = primorial(e) - primorial(e-1). - Sebastian Karlsson, Jul 30 2022

A046523 Smallest number with same prime signature as n.

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 12, 2, 6, 6, 16, 2, 12, 2, 12, 6, 6, 2, 24, 4, 6, 8, 12, 2, 30, 2, 32, 6, 6, 6, 36, 2, 6, 6, 24, 2, 30, 2, 12, 12, 6, 2, 48, 4, 12, 6, 12, 2, 24, 6, 24, 6, 6, 2, 60, 2, 6, 12, 64, 6, 30, 2, 12, 6, 30, 2, 72, 2, 6, 12, 12, 6, 30, 2, 48, 16, 6, 2, 60, 6, 6, 6, 24, 2
Offset: 1

Views

Author

Keywords

Examples

			If p,q,... are different primes, a(p)=2, a(p^2)=4, a(pq)=6, a(p^2*q)=12, etc.
n = 108 = 2*2*3*3*3 is replaced by a(n) = 2*2*2*3*3 = 72;
n = 105875 = 5*5*5*7*11*11 is represented by a(n) = 2*2*2*3*3*5 = 360.
Prime-powers are replaced by corresponding powers of 2, primes by 2.
Factorials, primorials and lcm[1..n] are in the sequence.
A000005(a(n)) = A000005(n) remains invariant; least and largest prime factors of a(n) are 2 or p[A001221(n)] resp.
		

Crossrefs

A025487 gives range of values of this sequence.

Programs

  • Haskell
    import Data.List (sort)
    a046523 = product .
              zipWith (^) a000040_list . reverse . sort . a124010_row
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i][2], i=1..nops(l)))
            (sort(ifactors(n)[2], (x, y)->x[2]>y[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 18 2014
  • Mathematica
    Table[Apply[Times, p[w]^Reverse[Sort[ex[w]]]], {w, 1, 1000}] p[x_] := Table[Prime[w], {w, 1, lf[x]}] ex[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]]
    ps[n_] := Sort[Last /@ FactorInteger[n]]; Join[{1}, Table[i = 2; While[ps[n] != ps[i], i++]; i, {n, 2, 89}]] (* Jayanta Basu, Jun 27 2013 *)
  • PARI
    a(n)=my(f=vecsort(factor(n)[,2],,4),p);prod(i=1,#f,(p=nextprime(p+1))^f[i]) \\ Charles R Greathouse IV, Aug 17 2011
    
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[,2],,4)),n) \\ M. F. Hasler, Oct 12 2018, improved Jul 18 2019
    
  • Python
    from sympy import factorint
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1 # Indranil Ghosh, May 05 2017
    
  • Python
    from math import prod
    from sympy import factorint, prime
    def A046523(n): return prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))) # Chai Wah Wu, Feb 04 2022

Formula

In prime factorization of n, replace most common prime by 2, next most common by 3, etc.
a(n) = A124859(A124859(n)) = A181822(A124859(n)). - Matthew Vandermast, May 19 2012
a(n) = A181821(A181819(n)). - Alois P. Heinz, Feb 17 2020

Extensions

Corrected and extended by Ray Chandler, Mar 11 2004

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A181821 a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of A025487. a(n) is the member m of A025487 such that A181819(m) = n. a(n) is also the member of A025487 whose prime signature is conjugate to the prime signature of A108951(n).
If n = Product_i prime(e(i)) with the e(i) weakly decreasing, then a(n) = Product_i prime(i)^e(i). For example, 90 = prime(3) * prime(2) * prime(2) * prime(1), so a(90) = prime(1)^3 * prime(2)^2 * prime(3)^2 * prime(4)^1 = 12600. - Gus Wiseman, Jan 02 2019

Examples

			The canonical factorization of 24 is 2^3*3^1. Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10. Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->
                 numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)
    Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,30}] (* Gus Wiseman, Jan 02 2019 *)
  • PARI
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; \\ Antti Karttunen, Dec 10 2018
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A181821(n): return prod(prime(i)**e for i, e in enumerate(sorted(map(primepi,factorint(n,multiple=True)),reverse=True),1)) # Chai Wah Wu, Sep 15 2023

Formula

If A108951(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A108951(n))).
a(A181819(n)) = A046523(n). - [See also A124859]. Antti Karttunen, Dec 10 2018
a(n) = A025487(A361808(n)). - Pontus von Brömssen, Mar 25 2023
a(n) = A108951(A122111(n)). - Antti Karttunen, Sep 15 2023

Extensions

Definition corrected by Gus Wiseman, Jan 02 2019

A278222 The least number with the same prime signature as A005940(n+1).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 4, 8, 2, 6, 6, 12, 4, 12, 8, 16, 2, 6, 6, 12, 6, 30, 12, 24, 4, 12, 12, 36, 8, 24, 16, 32, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 4, 12, 12, 36, 12, 60, 36, 72, 8, 24, 24, 72, 16, 48, 32, 64, 2, 6, 6, 12, 6, 30, 12, 24, 6, 30, 30, 60, 12, 60, 24, 48, 6, 30, 30, 60, 30, 210, 60, 120, 12, 60, 60, 180, 24, 120, 48, 96, 4, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Nov 15 2016

Keywords

Comments

This sequence can be used for filtering certain base-2 related sequences, because it matches only with any such sequence b that can be computed as b(n) = f(A005940(n+1)), where f(n) is any function that depends only on the prime signature of n (some of these are listed under the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.
Because the Doudna map n -> A005940(1+n) is an isomorphism from "unary-binary encoding of factorization" (see A156552) to the ordinary representation of the prime factorization of n, it follows that the equivalence classes of this sequence match with any such sequence b, where b(n) is computed from the lengths of 1-runs in the binary representation of n and the order of those 1-runs does not matter. Particularly, this holds for any sequence that is obtained as a "Run Length Transform", i.e., where b(n) = Product S(i), for some function S, where i runs through the lengths of runs of 1's in the binary expansion of n. See for example A227349.
However, this sequence itself is not a run length transform of any sequence (which can be seen for example from the fact that A046523 is not multiplicative).
Furthermore, this matches not only with sequences involving products of S(i), but with any sequence obtained with any commutative function applied cumulatively, like e.g., A000120 (binary weight, obtained in this case as Sum identity(i)), and A069010 (number of runs of 1's in binary representation of n, obtained as Sum signum(i)).

Crossrefs

Similar sequences: A278217, A278219 (other base-2 related variants), A069877 (base-10 related), A278226 (primorial base), A278234-A278236 (factorial base), A278243 (Stern polynomials), A278233 (factorization in ring GF(2)[X]), A046523 (factorization in Z).
Cf. also A286622 (rgs-transform of this sequence) and A286162, A286252, A286163, A286240, A286242, A286379, A286464, A286374, A286375, A286376, A286243, A286553 (various other sequences involving this sequence).
Sequences that partition N into same or coarser equivalence classes: too many to list all here (over a hundred). At least every sequence listed under index-entry "Run Length Transforms" is included (e.g., A227349, A246660, A278159), and also sequences like A000120 and A069010, and their combinations like A136277.

Programs

  • Mathematica
    f[n_, i_, x_] := Which[n == 0, x, EvenQ@ n, f[n/2, i + 1, x], True, f[(n - 1)/2, i, x Prime@ i]]; Array[If[# == 1, 1, Times @@ MapIndexed[ Prime[First[#2]]^#1 &, Sort[FactorInteger[#][[All, -1]], Greater]]] &@ f[# - 1, 1, 1] &, 99] (* Michael De Vlieger, May 09 2017 *)
  • PARI
    A046523(n)=factorback(primes(#n=vecsort(factor(n)[, 2], , 4)), n)
    a(n)=my(p=2, t=1); for(i=0,exponent(n), if(bittest(n,i), t*=p, p=nextprime(p+1))); A046523(t) \\ Charles R Greathouse IV, Nov 11 2021
  • Python
    from sympy import prime, factorint
    import math
    def A(n): return n - 2**int(math.floor(math.log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a005940(n): return b(n - 1)
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return a046523(a005940(n + 1)) # Indranil Ghosh, May 05 2017
    
  • Scheme
    (define (A278222 n) (A046523 (A005940 (+ 1 n))))
    

Formula

a(n) = A046523(A005940(1+n)).
a(n) = A124859(A278159(n)).
a(n) = A278219(A006068(n)).

Extensions

Misleading part of the name removed by Antti Karttunen, Apr 07 2022

A238745 a(1) = 1; for n > 1, if the first integer with the same prime signature as n is factorized into primorials as Product A002110(i)^e(i), then a(n) = Product prime(i)^e(i).

Original entry on oeis.org

1, 2, 2, 4, 2, 3, 2, 8, 4, 3, 2, 6, 2, 3, 3, 16, 2, 6, 2, 6, 3, 3, 2, 12, 4, 3, 8, 6, 2, 5, 2, 32, 3, 3, 3, 9, 2, 3, 3, 12, 2, 5, 2, 6, 6, 3, 2, 24, 4, 6, 3, 6, 2, 12, 3, 12, 3, 3, 2, 10, 2, 3, 6, 64, 3, 5, 2, 6, 3, 5, 2, 18, 2, 3, 6, 6, 3, 5, 2, 24, 16, 3, 2
Offset: 1

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

Alternate definition: a(1) = 1; for n > 1, if row n of table A238744 is {k(1), k(2),...,k(A051903(n))}, then a(n) = Product {i = 1 to A051903(n)} prime(k(i)).
Since the first integer of each prime signature (A025487) is always a product of primorials (A002110), there is always a value for a(n). Every positive integer appears in the sequence.
a(m) = a(n) iff m and n have the same prime signature. If the prime signatures of m and n are conjugate to each other when they are viewed as partitions, then a(n) = A181819(m) and a(m) = A181819(n).

Examples

			The first integer with the same prime signature as 40 is 24 = 2^3*3. Since the factorization of 24 into primorials is 24 = 2^2*6 = A002110(1)^2*A002110(2), a(24) = a(40) = prime(1)^2*prime(2) = 2^2*3 = 12.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, d, a}, While[n - Times @@ Prime@ Range[k + 1] >= 0, k++]; If[n == Product[Prime@ i, {i, k}], Prime@ k, d = Select[Reverse@ FoldList[#1 #2 &, Prime@ Range@ k], Divisible[n, #] &]; If[AllTrue[#, IntegerQ], Times @@ Map[(FactorInteger[#1][[-1, 1]])^#2 & @@ # &, Reverse@ Tally@ #], False] &@ Rest@ NestWhileList[Function[P, {#1/P, P}]@ SelectFirst[d, Function[k, Divisible[#1, k]]] & @@ # &, {n, 1}, First@ # > 1 &][[All, -1]]]]; Table[f@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]] - Boole[n == 1], {n, 83}] (* Michael De Vlieger, May 19 2017, Version 10.2 *)

Formula

a(n) = A181819(A124859(n)).
a(n) = A122111(A181819(n)).

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.
Showing 1-10 of 14 results. Next