cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366438 The number of divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 8, 4, 4, 2, 8, 2, 6, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 2, 4, 2, 8, 4, 8, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 8, 2, 4, 4, 4, 4, 12, 2, 2, 8, 2, 8, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 16, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Comments

1 is the only odd term in this sequence.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Times @@ (e + 1), Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(vecprod(apply(x -> x+1, e)), ", ")));
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A366438_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e&1 for e in f):
                yield prod(e+1 for e in f)
    A366438_list = list(islice(A366438_gen(),30)) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A268335(n)).

A363194 Number of divisors of the n-th powerful number A001694(n).

Original entry on oeis.org

1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 12, 5, 9, 12, 3, 4, 8, 15, 3, 9, 12, 16, 9, 6, 9, 18, 3, 15, 4, 3, 12, 15, 20, 9, 9, 12, 10, 3, 21, 5, 20, 12, 9, 7, 15, 18, 3, 24, 27, 3, 12, 18, 16, 11, 9, 12, 24, 9, 9, 25, 12, 4, 12, 3, 12, 9, 9, 18, 21, 3, 28, 27, 36, 3, 15
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363195.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(numdiv, select(ispowerful, [1..3000]))
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363194_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>1 for e in f):
                yield prod(e+1 for e in f)
    A363194_list = list(islice(A363194_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A001694(n)).
Sum_{A001694(k) < x} a(k) = c_1 * sqrt(x) * log(x)^2 + c_2 * sqrt(x) * log(x) + c_3 * sqrt(x) + O(x^(5/12 + eps)), where c_1, c_2 and c_3 are constants. c_1 = Product_{p prime} (1 + 4/p^(3/2) - 1/p^2 - 6/p^(5/2) + 2/p^(7/2))/8 = 0.516273682988566836609... . [corrected Sep 21 2024]
a(n) = A343443(A306458(n)). - Amiram Eldar, Sep 01 2023

A364154 Lexicographically earliest sequence of distinct positive integers such that a(n) is least novel multiple m of the product of all primes less than the greatest prime factor of a(n-1) which do not divide a(n-1); a(1) = 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 30, 8, 9, 10, 12, 11, 210, 13, 2310, 14, 15, 16, 17, 30030, 18, 19, 510510, 20, 21, 40, 24, 22, 105, 26, 1155, 28, 45, 32, 23, 9699690, 25, 36, 27, 34, 15015, 38, 255255, 42, 35, 48, 29, 223092870, 31, 6469693230, 33, 70, 39, 770, 51, 10010
Offset: 1

Views

Author

David James Sycamore, Jul 11 2023

Keywords

Comments

It follows from the definition that the sequence is infinite, and that the records (outside of the first 7 terms) are all primorial numbers, meaning that it grows very quickly.
When there are no primes less than the greatest prime factor of a(n-1) which do not divide a(n-1) then m is the least novel multiple of 1, the empty product, and therefore a(n) = u, the least unused number in the sequence so far. The only way a prime can enter the sequence is as u. When a(n-1) = prime(k), a(n) is A002110(k-1), and any primorial term is followed by u. Thus: prime —> primorial —> u.
Sequence is a permutation of the positive integers since by the definition no number appears more than once and m = 1 eventually introduces any number not already placed by the first part of the definition (m > 1).

Examples

			a(1) = 1 and there are no primes < 1 which divide 1 therefore m = 1 so a(2) = 2, the least unused number. Likewise a(3) = 3.
a(4) = 2*2 = 4 since 2 is the only prime < 3 which does not divide 3 and 2 has already occurred.
Since a(7) = 7, a(8) = 2*3*5 = 30.
		

Crossrefs

Programs

  • Mathematica
    nn = 120; c[] := False; m[] := 1; a[1] = j = 1; c[1] = True;
    Do[k = Times @@ Complement[Prime@ Range[PrimePi@ Last[#] - 1], #] &[
       FactorInteger[j][[All, 1]] ];
     While[c[k m[k]], m[k]++]; k *= m[k];
     Set[{a[n], c[k], j}, {k, True, k}], {n, 2, nn}];
    Array[a, nn]
  • PARI
    lista(nn) = my(c, m, v=List([1, 2])); for(k=3, nn, c=m=1; forprime(p=2, vecmax(factor(v[k-1])[, 1]), if(v[k-1]%p, m*=p)); while(setsearch(Set(v), c*m), c++); listput(v, c*m)); Vec(v) \\ Jinyuan Wang, Jul 11 2023

Extensions

More terms from Jinyuan Wang, Jul 11 2023

A366441 The number of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 2, 2, 2, 3, 2, 4, 2, 2, 4, 2, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 3, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 2, 4, 2, 2, 3, 2, 6, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 4, 2, 2, 6, 4, 2, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = numdiv((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_count
    def A366441(n): return divisor_count((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000005(A007310(n)).
Sum_{k=1..n} a(k) ~ (log(n) + 2*gamma - 1 + 2*log(6)) * n / 3, where gamma is Euler's constant (A001620).
Showing 1-4 of 4 results.