A072071 Number of integer solutions to the equation 4x^2+y^2+32z^2=n.
1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 6, 4, 0, 0, 12, 12, 0, 0, 16, 8, 0, 0, 0, 12, 0, 0, 8, 10, 0, 0, 24, 4, 0, 0, 0, 12, 0, 0, 0, 12, 0, 0, 12, 8, 0, 0, 16, 8, 0, 0, 20, 12, 0, 0, 0, 8, 0, 0, 8, 6, 0, 0, 16, 16, 0, 0, 0, 4, 0, 0, 0, 8, 0, 0, 8
Offset: 0
Keywords
Examples
a(4) = 4 because (1,0,0), (-1,0,0), (0,2,0) and (0,-2,0) are solutions. 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
References
- J. B. Tunnell, A classical Diophantine problem and modular forms of weight 3/2, Invent. Math., 72 (1983), 323-334.
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Clay Mathematics Institute, The Birch and Swinnerton-Dyer Conjecture
- Department of Pure Maths., Univ. Sheffield, Pythagorean triples and the congruent number problem
- Karl Rubin, Elliptic curves and right triangles
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
J12[q_] := Sum[q^n^2, {n, -10, 10}]; CoefficientList[Series[J12[q]J12[q^4]J12[q^32], {q, 0, 100}], q]
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^-2 * eta(x^2 + A)^5 * eta(x^4 + A)^-4 * eta(x^8 + A)^5 * eta(x^16 + A)^-2 * eta(x^32 + A)^-2 * eta(x^64 + A)^5 * eta(x^128 + A)^-2, n))}
Formula
Expansion of phi(x) * phi(x^4) * phi(x^32) in powers of x where phi() is a Ramanujan theta function.
a(4*n + 2) = a(4*n + 3) = 0. - Michael Somos, Jun 08 2012
Extensions
More terms from Vladeta Jovovic, Jun 16 2002
Comments