A072103 Sorted perfect powers a^b for a, b > 1 with duplication.
4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, 64, 81, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 256, 256, 289, 324, 343, 361, 400, 441, 484, 512, 512, 529, 576, 625, 625, 676, 729, 729, 729, 784, 841, 900, 961, 1000, 1024, 1024, 1024, 1089
Offset: 1
Keywords
Examples
(a,b) = (2,4) and (4,2) both yield 2^4 = 4^2 = 16, therefore 16 is listed twice. Similarly, 64 is listed 3 times since (a,b) = (2,6), (4,3) and (8,2) all yield 64.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..9999, recomputed with new offset by _M. F. Hasler_, Jan 25 2015
- Eric Weisstein's World of Mathematics, Perfect Power
Programs
-
Haskell
import Data.Set (singleton, findMin, deleteMin, insert) a072103 n = a072103_list !! (n-1) a072103_list = f 9 3 $ Set.singleton (4,2) where f zz z s | xx < zz = xx : f zz z (Set.insert (x*xx, x) $ Set.deleteMin s) | otherwise = zz : f (zz+2*z+1) (z+1) (Set.insert (z*zz, z) s) where (xx, x) = Set.findMin s -- Reinhard Zumkeller, Oct 04 2012
-
Maple
N:= 2000: # to get all entries <= N sort([seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))]); # Robert Israel, Jan 25 2015
-
Mathematica
nn=60;Take[Sort[#[[1]]^#[[2]]&/@Tuples[Range[2,nn],2]],nn] (* Harvey P. Dale, Oct 03 2012 *)
-
PARI
is_A072103(n)=ispower(n) for(n=1,999,(e=ispower(n))||next;fordiv(e,d,d>1 && print1(n","))) \\ M. F. Hasler, Jan 25 2015
-
Python
import numpy from math import isqrt upto = 1090 A072103 = [] for m in range(2,isqrt(upto)+1): k = 2 while m**k < upto: A072103.append(m**k) k += 1 print(sorted(A072103)) # Karl-Heinz Hofmann, Sep 16 2023
Formula
Sum_{i>=2} Sum_{j>=2} 1/i^j = 1.
Extensions
Offset corrected and examples added by M. F. Hasler, Jan 25 2015
Comments