cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109251 Number of numbers up to 10^n which are products of three primes.

Original entry on oeis.org

0, 1, 22, 247, 2569, 25556, 250853, 2444359, 23727305, 229924367, 2227121996, 21578747909, 209214982913, 2030133769624, 19717814526785, 191693417109381, 1865380637252270, 18168907486812690, 177123437184971927, 1728190923820610000
Offset: 0

Views

Author

Martin Raab, Aug 19 2005

Keywords

Examples

			There are 22 numbers with three prime factors up to 10^2: 8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99.
		

Crossrefs

Cf. A014612 = numbers with three prime factors, A036352 = number of numbers up to 10^n which are products of two primes, A072114.

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[ PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@ Sqrt[n/Prime@i]}]; Table[ ThreeAlmostPrimePi[10^n], {n, 0, 14}] (* Robert G. Wilson v *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A109251(n):
        r = 10**n
        return int(sum(primepi(r//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(r,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(r//k)+1),a))) # Chai Wah Wu, Sep 18 2024

Formula

a(n) = A072114(10^n). - R. J. Mathar, May 25 2008

Extensions

a(10)-a(14) from Robert G. Wilson v, Feb 06 2006
a(15)-a(17) from Hiroaki Yamanouchi, Aug 30 2014
a(18)-a(19) from Henri Lifchitz, Dec 01 2014

A120034 Number of 3-almost primes t such that 2^n < t <= 2^(n+1).

Original entry on oeis.org

0, 0, 1, 1, 5, 6, 17, 30, 65, 131, 257, 536, 1033, 2132, 4187, 8370, 16656, 33123, 65855, 130460, 259431, 513737, 1019223, 2019783, 4003071, 7930375, 15712418, 31126184, 61654062, 122137206, 241920724, 479226157, 949313939, 1880589368, 3725662783
Offset: 0

Views

Author

Keywords

Comments

The partial sum equals the number of Pi_3(2^n) = A127396(n).

Examples

			(2^3, 2^4] there is one semiprime, namely 12. 8 was counted in the previous entry.
		

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi@Sqrt[n/Prime@i]}]; t = Table[ ThreePrimePi[2^n], {n, 0, 35}]; Rest@t - Most@t

A127396 Number of 3-almostprimes <= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 7, 13, 30, 60, 125, 256, 513, 1049, 2082, 4214, 8401, 16771, 33427, 66550, 132405, 262865, 522296, 1036033, 2055256, 4075039, 8078110, 16008485, 31720903, 62847087, 124501149, 246638355, 488559079, 967785236, 1917099175, 3797688543
Offset: 1

Views

Author

Robert G. Wilson v, Dec 29 2006

Keywords

Crossrefs

Programs

  • Mathematica
    ThreeAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j)] - j + 1, {i, PrimePi[n^(1/3)]}, {j, i, PrimePi[Sqrt[n/Prime@i]]}]; Table[ ThreeAlmostPrimePi[2^n], {n, 30}]

Formula

a(n) = A072114(2^n). - R. J. Mathar, Aug 26 2011

A082996 a(n) = card{ x <= n : bigomega(x) = 4 }.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1

Views

Author

Benoit Cloitre, May 30 2003

Keywords

Crossrefs

Partial sums of A101637.

Programs

  • PARI
    a(n)=sum(i=1,n,bigomega(i)==4)
    
  • PARI
    a(n)=my(j,s);forprime(p=2,(n+.5)^(1/4),forprime(q=p,(n/p+.5)^(1/3),j=primepi(q)-2;forprime(r=q,sqrtint(n\(p*q)),s+=primepi(n\(p*q*r))-j++)));s \\ Charles R Greathouse IV, Mar 21 2012
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A082996(n): return int(sum(primepi(n//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(n,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(n//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(n//(k*m))+1),b))) # Chai Wah Wu, Mar 29 2025

Formula

a(n) ~ (1/6)*(n/log(n))*log(log(n))^3.

A082998 a(n) = card{ x <= n : omega(x) = 3 }.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10
Offset: 1

Views

Author

Benoit Cloitre, May 30 2003

Keywords

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Programs

  • PARI
    a(n)=sum(i=1,n,if(omega(i)-3,0,1))
    
  • PARI
    a(n, k = 3, m = 1, p = 2, s = sqrtnint(n\m, k), j = 1) = my(count = 0); if (k==2, while(p <= s, my(r = nextprime(p+1)); my(t = m*p); while (t <= n, my(w = n\t); if(r > w, break); count += primepi(w) - j; my(r2 = r); while(r2 <= w, my(u = t*r2*r2); if(u > n, break); while (u <= n, count += 1; u *= r2); r2 = nextprime(r2+1)); t *= p); p = r; j += 1); return(count)); while(p <= s, my(r = nextprime(p+1)); my(t = m*p); while(t <= n, my(s = sqrtnint(n\t, k-1)); if(r > s, break); count += a(n, k-1, t, r, s, j+1); t *= p); p = r; j += 1); count; \\ Daniel Suteu, Jul 21 2021
    
  • Python
    from sympy import factorint
    from itertools import accumulate
    def cond(n): return int(len(factorint(n))==3)
    def aupto(nn): return list(accumulate(map(cond, range(1, nn+1))))
    print(aupto(105)) # Michael S. Branicky, Jul 21 2021

Formula

a(n) ~ (1/2)*(n/log(n))*log(log(n))^2.
a(A033992(n)) = n. - Daniel Suteu, Jul 21 2021
Showing 1-5 of 5 results.