A072123 Remainder when Fibonacci(n) is divided by prime(n).
1, 1, 2, 3, 5, 8, 13, 2, 11, 26, 27, 33, 28, 33, 46, 33, 4, 22, 27, 20, 69, 15, 22, 88, 44, 92, 100, 21, 76, 21, 69, 41, 116, 134, 44, 76, 70, 117, 80, 157, 129, 87, 73, 27, 157, 1, 5, 208, 27, 108, 1, 203, 230, 19, 112, 143, 206, 258, 31, 3, 146, 266, 117, 213, 211, 168
Offset: 1
Examples
a(8) = F(8) mod prime(8) = 21 mod 19 = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Zak Seidov)
Programs
-
Magma
[Fibonacci(n) mod NthPrime(n): n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
-
Maple
seq(combinat[fibonacci](n) mod ithprime(n), n=1..1000); # Robert Israel, Dec 24 2014
-
Mathematica
Table[Mod[Fibonacci[n],Prime[n]],{n,70}] (* Harvey P. Dale, Jan 25 2011 *)
-
PARI
fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2] a(n)=lift(fibmod(n,prime(n))) \\ Charles R Greathouse IV, Jun 19 2017
Formula
a(n) = F(n) mod prime(n), where F(n) is the n-th Fibonacci number and prime(n) is the n-th prime number.
Comments