cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072123 Remainder when Fibonacci(n) is divided by prime(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 2, 11, 26, 27, 33, 28, 33, 46, 33, 4, 22, 27, 20, 69, 15, 22, 88, 44, 92, 100, 21, 76, 21, 69, 41, 116, 134, 44, 76, 70, 117, 80, 157, 129, 87, 73, 27, 157, 1, 5, 208, 27, 108, 1, 203, 230, 19, 112, 143, 206, 258, 31, 3, 146, 266, 117, 213, 211, 168
Offset: 1

Views

Author

Randy L. Ekl, Jun 20 2002

Keywords

Comments

For k=0..8, a(10^k) = 1, 26, 55, 5965, 99584, 728618, 2256590, 61329731, 1081853265. - Zak Seidov, Dec 23 2014

Examples

			a(8) = F(8) mod prime(8) = 21 mod 19 = 2.
		

Crossrefs

Cf. A000040, A000045, A075702 (locations of 0 in this sequence), A121104.

Programs

  • Magma
    [Fibonacci(n) mod NthPrime(n): n in [1..120]]; // Vincenzo Librandi, Nov 19 2015
    
  • Maple
    seq(combinat[fibonacci](n) mod ithprime(n), n=1..1000); # Robert Israel, Dec 24 2014
  • Mathematica
    Table[Mod[Fibonacci[n],Prime[n]],{n,70}] (* Harvey P. Dale, Jan 25 2011 *)
  • PARI
    fibmod(n, m)=((Mod([1, 1; 1, 0], m))^n)[1, 2]
    a(n)=lift(fibmod(n,prime(n))) \\ Charles R Greathouse IV, Jun 19 2017

Formula

a(n) = F(n) mod prime(n), where F(n) is the n-th Fibonacci number and prime(n) is the n-th prime number.