A072172 a(n) = (2*n+1)*5^(2*n+1).
5, 375, 15625, 546875, 17578125, 537109375, 15869140625, 457763671875, 12969970703125, 362396240234375, 10013580322265625, 274181365966796875, 7450580596923828125, 201165676116943359375, 5401670932769775390625, 144354999065399169921875
Offset: 0
References
- H. Doerrie, 100 Great Problems of Elementary Mathematics, Dover, NY, 1965, p. 73
Links
- Colin Barker, Table of n, a(n) for n = 0..700
- Index entries for linear recurrences with constant coefficients, signature (50,-625).
Crossrefs
Cf. A072173.
Cf. A157332. - Jaume Oliver Lafont, Mar 03 2009
Programs
-
GAP
List([0..20], n-> (2*n+1)*5^(2*n+1)); # G. C. Greubel, Aug 26 2019
-
Magma
[(2*n+1)*5^(2*n+1): n in [0..20]]; // G. C. Greubel, Aug 26 2019
-
Maple
seq((2*n+1)*5^(2*n+1), n=0..20); # G. C. Greubel, Aug 26 2019
-
Mathematica
Table[(2*n+1)*5^(2*n+1), {n,0,20}] (* G. C. Greubel, Aug 26 2019 *)
-
PARI
Vec(5*(1+25*x)/(1-25*x)^2 + O(x^20)) \\ Colin Barker, Aug 25 2016
-
PARI
vector(20, n, (2*n-1)*5^(2*n-1) ) \\ G. C. Greubel, Aug 26 2019
-
Sage
[(2*n+1)*5^(2*n+1) for n in (0..20)] # G. C. Greubel, Aug 26 2019
Formula
From Colin Barker, Aug 25 2016: (Start)
a(n) = 50*a(n-1) - 625*a(n-2) for n>1.
G.f.: 5*(1+25*x)/(1-25*x)^2.
(End)
From Ilya Gutkovskiy, Aug 25 2016: (Start)
E.g.f.: 5*(1 + 50*x)*exp(25*x).
Sum_{n>=0} 1/a(n) = arctanh(1/5) = 0.2027325540540821...
Sum_{n>=0} (-1)^n/a(n) = arctan(1/5) = A105532 (End)
Comments