cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A082432 a(n) = p - A072181(n), where p is the least prime > A072181(n) + 1.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 13, 13, 13, 13, 13, 17, 17, 17, 23, 59, 47, 41, 23, 23, 23, 83, 293, 383, 383, 103, 563, 107, 107, 71, 1399, 1399, 1399, 1399, 2803, 983, 983, 983, 10589, 5693, 5693, 19553, 827, 31699, 31699, 33001, 12193
Offset: 1

Views

Author

Naohiro Nomoto, Apr 25 2003

Keywords

Comments

Is a(n) always prime?

Examples

			a(4) = 17 - A072181(4) = 17 - 12 = 5.
		

Crossrefs

Extensions

a(36)-a(47) from Iain Fox, Nov 23 2017
a(48) from Iain Fox, Nov 29 2017

A082463 Numbers k such that A072181(k) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10
Offset: 1

Views

Author

Naohiro Nomoto, Apr 26 2003

Keywords

Comments

a(10), if it exists, is greater than 47; any corresponding primes would have more than 40,000 decimal digits. - Charles R Greathouse IV, Oct 16 2015
a(10), if it exists, is greater than 66. - Michael S. Branicky, Dec 23 2024

Crossrefs

Programs

  • PARI
    stepA072181(k,n)=if(n<3, return(n)); my(f=factor(k), g=factor(n), p=Set(concat(f[,1],g[,1])), x=((f,p) -> my(i=setsearch(f[,1]~,p)); if(i,f[i,2],1)), e=apply(q->x(f,q)*x(g,q),p)); factorback(concat(Mat(p~),e~))
    for(n=1,1e4,k=stepA072181(k,n); if(ispseudoprime(k+1),print1(n", "))) \\ Charles R Greathouse IV, Oct 16 2015

A082464 Numbers k such that A072181(k) - 1 is prime.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 27
Offset: 1

Views

Author

Naohiro Nomoto, Apr 26 2003

Keywords

Comments

a(8), if it exists, is greater than 67. - Michael S. Branicky, Dec 23 2024

Crossrefs

A082433 a(n) = A072181(n) - p, where p is the largest prime < A072181(n) - 1.

Original entry on oeis.org

3, 5, 7, 7, 11, 11, 11, 11, 13, 23, 17, 17, 17, 41, 191, 47, 31, 53, 53, 53, 31, 179, 61, 61, 337, 131, 523, 523, 419, 223, 223, 223, 223, 79, 3821, 3821, 3821, 23399, 21269, 21269, 3607
Offset: 3

Views

Author

Naohiro Nomoto, Apr 25 2003

Keywords

Comments

Are all terms prime?
All terms are odd. - Michael S. Branicky, Sep 05 2021

Examples

			a(4) = A072181(4)-7 = 12-7 = 5.
		

Crossrefs

Programs

  • Python
    from sympy import factorint, isprime
    def afindn(terms):
        prev_factors, prevan, prevk, n = dict(), 1, None, 2
        for n in range(2, terms+1):
            n_factors, an = factorint(n), 1
            for pi in set(prev_factors.keys()) | set(n_factors.keys()):
                ei = prev_factors[pi] if pi in prev_factors else 1
                fi = n_factors[pi] if pi in n_factors else 1
                an *= pi**(ei*fi)
            if n >= 3:
                if an != prevan:
                    k = 3
                    while not isprime(an - k): k += 2
                else:
                    k = prevk
                print(k, end=", ")
                prevk = k
            prev_factors, prevan = factorint(an), an
    afindn(36) # Michael S. Branicky, Sep 05 2021

Extensions

a(36)-a(40) from Jinyuan Wang, Sep 05 2020
a(41)-a(43) from Michael S. Branicky, Sep 05 2021
Showing 1-4 of 4 results.