A072186 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for Wallis pairs with x < y (ordered by values of x).
5, 15, 35, 45, 55, 65, 85, 95, 105, 115, 135, 145, 155, 165, 185, 195, 205, 215, 235, 245, 255, 265, 285, 295, 305, 315, 335, 345, 355, 365, 385, 395, 405, 407, 415, 435, 445, 455, 465, 485, 495, 505, 489, 515, 535, 545, 555, 565, 585, 595, 605, 615, 635
Offset: 1
Examples
The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
References
- I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a072186 n = a072186_list !! (n-1) -- a072186_list defined in A072182. -- Reinhard Zumkeller, Sep 18 2013
-
Mathematica
w = {}; m = 550; Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x + 1, sq}], {x, 1, m}]; w[[All, 2]] (* Jean-François Alcover, Oct 01 2019 *)
-
PARI
{w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][2],","))}
Extensions
Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002
Comments