cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072186 A Wallis pair (x,y) satisfies sigma(x^2) = sigma(y^2); sequence gives y's for Wallis pairs with x < y (ordered by values of x).

Original entry on oeis.org

5, 15, 35, 45, 55, 65, 85, 95, 105, 115, 135, 145, 155, 165, 185, 195, 205, 215, 235, 245, 255, 265, 285, 295, 305, 315, 335, 345, 355, 365, 385, 395, 405, 407, 415, 435, 445, 455, 465, 485, 495, 505, 489, 515, 535, 545, 555, 565, 585, 595, 605, 615, 635
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2002

Keywords

Comments

5*A045572 is included in this sequence. - Benoit Cloitre, Oct 22 2002

Examples

			The first few pairs are all multiples of the first pair (4,5): (4, 5), (12, 15), (28, 35), (36, 45), (44, 55), (52, 65), ...
		

References

  • I. Kaplansky, The challenges of Fermat, Wallis and Ozanam (and several related challenges): II. Fermat's second challenge, Preprint, 2002.

Crossrefs

Programs

  • Haskell
    a072186 n = a072186_list !! (n-1)
    -- a072186_list defined in A072182.  -- Reinhard Zumkeller, Sep 18 2013
  • Mathematica
    w = {}; m = 550;
    Do[q = DivisorSigma[1, x^2]; sq = Sqrt[q] // Floor; Do[If[q == DivisorSigma[1, y^2], AppendTo[w, {x, y}]], {y, x + 1, sq}], {x, 1, m}];
    w[[All, 2]] (* Jean-François Alcover, Oct 01 2019 *)
  • PARI
    {w=[]; m=550; for(x=1,m,q=sigma(x^2); sq=sqrtint(q); for(y=x+1,sq,if(q==sigma(y^2), w=concat(w,[[x,y]])))); for(j=1,matsize(w)[2],print1(w[j][2],","))}
    

Extensions

Extended by Klaus Brockhaus and Benoit Cloitre, Oct 22 2002