A072203 (Number of oddly factored numbers <= n) - (number of evenly factored numbers <= n).
0, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 6, 7, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 4, 3, 4, 3, 4, 3, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8, 9, 8, 9, 10, 11, 10, 9, 10, 9, 8, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 2, 3, 4, 3, 4, 5, 6
Offset: 1
References
- G. Polya, Mathematics and Plausible Reasoning, S.8.16.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- C. B. Haselgrove, A disproof of a conjecture of Polya, Mathematika 5 (1958), pp. 141-145.
- R. S. Lehman, On Liouville's function, Math. Comp., 14 (1960), 311-320.
- Kyle Sturgill-Simon, An interesting opportunity: the Gilbreath conjecture, Honors Thesis, Mathematics Dept., Carroll College, 2012.
- M. Tanaka, A Numerical Investigation on Cumulative Sum of the Liouville Function, Tokyo J. Math. 3:1, 187-189, 1980.
Programs
-
Haskell
a072203 n = a072203_list !! (n-1) a072203_list = scanl1 (\x y -> x + 2*y - 1) a066829_list -- Reinhard Zumkeller, Nov 19 2011
-
Mathematica
f[n_Integer] := Length[Flatten[Table[ #[[1]], {#[[2]]}] & /@ FactorInteger[n]]]; g[n_] := g[n] = g[n - 1] + If[ EvenQ[ f[n]], -1, 1]; g[1] = 0; Table[g[n], {n, 1, 103}] Join[{0},Accumulate[Rest[Table[If[OddQ[PrimeOmega[n]],1,-1],{n,110}]]]] (* Harvey P. Dale, Mar 10 2013 *) Table[1 - Sum[(-1)^PrimeOmega[i], {i, 1, n}], {n, 1, 100}] (* Indranil Ghosh, Mar 17 2017 *)
-
PARI
a(n) = 1 - sum(i=1, n, (-1)^bigomega(i)); for(n=1, 100, print1(a(n),", ")) \\ Indranil Ghosh, Mar 17 2017
-
Python
from functools import reduce from operator import ixor from sympy import factorint def A072203(n): return 1+sum(1 if reduce(ixor, factorint(i).values(),0)&1 else -1 for i in range(1,n+1)) # Chai Wah Wu, Dec 20 2022
Extensions
Edited and extended by Robert G. Wilson v, Jul 13 2002
Comment corrected by Charles R Greathouse IV, Mar 08 2010
Comments