A072226 Numbers k such that the k-th cyclotomic polynomial evaluated at 2 (=A019320(k)) is prime.
2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208, 234, 254, 261
Offset: 1
Keywords
Links
- Max Alekseyev, Table of n, a(n) for n = 1..289 (terms 1..234, 235..277, and 278..289 from Yves Gallot, T. D. Noe, and Carl Pomerance, respectively)
- Joerg Arndt, Matters Computational (The Fxtbook)
- Yves Gallot, Cyclotomic polynomials and prime numbers
- Carl Pomerance, Cyclotomic primes, arXiv:2411.04213 [math.NT], 2024.
- Wikipedia, Aurifeuillean factorization
- Index entries for cyclotomic polynomials, values at X
Programs
-
Mathematica
Select[Range[600], PrimeQ[Cyclotomic[ #, 2]]&]
-
PARI
for( i=1,999, ispseudoprime( polcyclo(i,2)) && print1( i",")) /* for PARI < 2.4.2 use ...subst(polcyclo(i),x,2)... */ \\ M. F. Hasler, Apr 03 2008
Extensions
Edited by Max Alekseyev, Apr 25 2018
Comments