A072261
a(n) = 4*a(n-1) + 1, a(1)=7.
Original entry on oeis.org
7, 29, 117, 469, 1877, 7509, 30037, 120149, 480597, 1922389, 7689557, 30758229, 123032917, 492131669, 1968526677, 7874106709, 31496426837, 125985707349, 503942829397, 2015771317589, 8063085270357, 32252341081429, 129009364325717, 516037457302869
Offset: 1
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
-
List([1..25], n-> (11*4^n -2)/6); # G. C. Greubel, Jan 14 2020
-
[(11*4^n -2)/6: n in [1..25]]; // G. C. Greubel, Jan 14 2020
-
seq(coeff(series(x*(7-6*x)/((1-x)*(1-4*x)), x, n+1), x, n), n = 1..25); # G. C. Greubel, Jan 14 2020
-
a[n_]:= 4a[n-1] +1; a[1]=7; Table[a[n], {n,25}]
NestList[4#+1&,7,30] (* or *) LinearRecurrence[{5,-4},{7,29},30] (* Harvey P. Dale, Sep 04 2023 *)
-
Vec(x*(7-6*x)/((1-x)*(1-4*x)) + O(x^25)) \\ Colin Barker, Oct 27 2019
-
[(11*4^n -2)/6 for n in (1..25)] # G. C. Greubel, Jan 14 2020
A072258
a(n) = ((6*n+1)*4^n - 1)/3.
Original entry on oeis.org
0, 9, 69, 405, 2133, 10581, 50517, 234837, 1070421, 4805973, 21321045, 93672789, 408245589, 1767200085, 7605671253, 32570168661, 138870609237, 589842175317, 2496807654741, 10536986432853
Offset: 0
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
-
List([0..40], n-> ((6*n+1)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
-
[((6*n+1)*4^n -1)/3: n in [0..40]]; // G. C. Greubel, Jan 14 2020
-
seq( ((6*n+1)*4^n -1)/3, n=0..40); # G. C. Greubel, Jan 14 2020
-
LinearRecurrence[{9,-24,16}, {0,9,69}, 40] (* G. C. Greubel, Jan 14 2020 *)
-
a(n)=((6*n+1)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[((6*n+1)*4^n -1)/3 for n in (0..40)] # G. C. Greubel, Jan 14 2020
A072259
a(n) = ((6*n+37)*4^n - 1)/3.
Original entry on oeis.org
12, 57, 261, 1173, 5205, 22869, 99669, 431445, 1856853, 7951701, 33903957, 144004437, 609572181, 2572506453, 10826896725, 45455070549, 190410216789, 796000605525, 3321441375573, 13835521316181, 57541108520277, 238960527103317, 991026480502101
Offset: 0
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
-
List([0..30], n-> ((6*n+37)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
-
[((6*n+37)*4^n -1)/3: n in [0..30]]; // G. C. Greubel, Jan 14 2020
-
seq( ((6*n+37)*4^n -1)/3, n=0..30); # G. C. Greubel, Jan 14 2020
-
LinearRecurrence[{9,-24,16},{12,57,261},30] (* Harvey P. Dale, Mar 10 2018 *)
-
a(n)=((6*n+37)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[((6*n+37)*4^n -1)/3 for n in (0..30)] # G. C. Greubel, Jan 14 2020
A072260
a(n) = ((6*n+19)*4^n - 1)/3.
Original entry on oeis.org
6, 33, 165, 789, 3669, 16725, 75093, 333141, 1463637, 6378837, 27612501, 118838613, 508908885, 2169853269, 9216283989, 39012619605, 164640413013, 692921390421, 2909124515157
Offset: 0
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
-
List([0..20], n-> ((6*n+19)*4^n-1)/3); # G. C. Greubel, Jan 14 2020
-
[((6*n+19)*4^n-1)/3: n in [0..20]]; // G. C. Greubel, Jan 14 2020
-
seq( ((6*n+19)*4^n -1)/3, n=0..20); # G. C. Greubel, Jan 14 2020
-
LinearRecurrence[{9,-24,16}, {6,33,165}, 20] (* G. C. Greubel, Jan 14 2020 *)
Table[((6n+19)4^n-1)/3,{n,0,20}] (* Harvey P. Dale, Jun 20 2024 *)
-
a(n)=((6*n+19)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
[((6*n+19)*4^n-1)/3 for n in (0..20)] # G. C. Greubel, Jan 14 2020
A072262
a(n) = 4*a(n-1) + 1, a(1)=11.
Original entry on oeis.org
11, 45, 181, 725, 2901, 11605, 46421, 185685, 742741, 2970965, 11883861, 47535445, 190141781, 760567125, 3042268501, 12169074005, 48676296021, 194705184085, 778820736341, 3115282945365, 12461131781461, 49844527125845
Offset: 1
N. Rathankar (rathankar(AT)yahoo.com), Jul 08 2002
-
List([1..30], n-> (17*4^n -2)/6); # G. C. Greubel, Jan 14 2020
-
[(17*4^n -2)/6: n in [1..30]]; // G. C. Greubel, Jan 14 2020
-
seq( (17*4^n -2)/6, n=1..30); # G. C. Greubel, Jan 14 2020
-
a[n_]:= 4a[n-1] +1; a[1]=11; Table[a[n], {n,25}]
NestList[4#+1&,11,30] (* or *) LinearRecurrence[{5,-4},{11,45},30] (* Harvey P. Dale, Dec 25 2014 *)
-
vector(30, n, (17*4^n -2)/6) \\ G. C. Greubel, Jan 14 2020
-
[(17*4^n -2)/6 for n in (1..30)] # G. C. Greubel, Jan 14 2020
Showing 1-5 of 5 results.
Comments