A072259 a(n) = ((6*n+37)*4^n - 1)/3.
12, 57, 261, 1173, 5205, 22869, 99669, 431445, 1856853, 7951701, 33903957, 144004437, 609572181, 2572506453, 10826896725, 45455070549, 190410216789, 796000605525, 3321441375573, 13835521316181, 57541108520277, 238960527103317, 991026480502101
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-24,16).
Programs
-
GAP
List([0..30], n-> ((6*n+37)*4^n -1)/3); # G. C. Greubel, Jan 14 2020
-
Magma
[((6*n+37)*4^n -1)/3: n in [0..30]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq( ((6*n+37)*4^n -1)/3, n=0..30); # G. C. Greubel, Jan 14 2020
-
Mathematica
LinearRecurrence[{9,-24,16},{12,57,261},30] (* Harvey P. Dale, Mar 10 2018 *)
-
PARI
a(n)=((6*n+37)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[((6*n+37)*4^n -1)/3 for n in (0..30)] # G. C. Greubel, Jan 14 2020
Formula
G.f.: 3*(4-17*x+12*x^2)/((1-x)*(1-4*x)^2). - Bruno Berselli, Dec 16 2011
E.g.f.: ((37 + 24*x)*exp(4*x) - exp(x))/3. - G. C. Greubel, Jan 14 2020
Extensions
Edited and extended by Henry Bottomley, Aug 06 2002
More terms from Harvey P. Dale, Mar 10 2018
Comments