A072260 a(n) = ((6*n+19)*4^n - 1)/3.
6, 33, 165, 789, 3669, 16725, 75093, 333141, 1463637, 6378837, 27612501, 118838613, 508908885, 2169853269, 9216283989, 39012619605, 164640413013, 692921390421, 2909124515157
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-24,16).
Programs
-
GAP
List([0..20], n-> ((6*n+19)*4^n-1)/3); # G. C. Greubel, Jan 14 2020
-
Magma
[((6*n+19)*4^n-1)/3: n in [0..20]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq( ((6*n+19)*4^n -1)/3, n=0..20); # G. C. Greubel, Jan 14 2020
-
Mathematica
LinearRecurrence[{9,-24,16}, {6,33,165}, 20] (* G. C. Greubel, Jan 14 2020 *) Table[((6n+19)4^n-1)/3,{n,0,20}] (* Harvey P. Dale, Jun 20 2024 *)
-
PARI
a(n)=((6*n+19)*4^n-1)/3 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[((6*n+19)*4^n-1)/3 for n in (0..20)] # G. C. Greubel, Jan 14 2020
Formula
G.f.: 3*(2-7*x+4*x^2)/((1-x)*(1-4*x)^2). - Bruno Berselli, Dec 16 2011
E.g.f.: ((19 + 24*x)*exp(4*x) - exp(x))/3. - G. C. Greubel, Jan 14 2020
Extensions
Edited and extended by Henry Bottomley, Aug 06 2002
Comments