A072262 a(n) = 4*a(n-1) + 1, a(1)=11.
11, 45, 181, 725, 2901, 11605, 46421, 185685, 742741, 2970965, 11883861, 47535445, 190141781, 760567125, 3042268501, 12169074005, 48676296021, 194705184085, 778820736341, 3115282945365, 12461131781461, 49844527125845
Offset: 1
Links
Programs
-
GAP
List([1..30], n-> (17*4^n -2)/6); # G. C. Greubel, Jan 14 2020
-
Magma
[(17*4^n -2)/6: n in [1..30]]; // G. C. Greubel, Jan 14 2020
-
Maple
seq( (17*4^n -2)/6, n=1..30); # G. C. Greubel, Jan 14 2020
-
Mathematica
a[n_]:= 4a[n-1] +1; a[1]=11; Table[a[n], {n,25}] NestList[4#+1&,11,30] (* or *) LinearRecurrence[{5,-4},{11,45},30] (* Harvey P. Dale, Dec 25 2014 *)
-
PARI
vector(30, n, (17*4^n -2)/6) \\ G. C. Greubel, Jan 14 2020
-
Sage
[(17*4^n -2)/6 for n in (1..30)] # G. C. Greubel, Jan 14 2020
Formula
From Bruno Berselli, Dec 16 2011: (Start)
G.f.: x*(11-10*x)/(1-5*x+4*x^2).
a(n) = (17*2^(2*n-1) - 1)/3.
Sum_{i=1..n} a(i) = (a(n+1) - n + 1)/3 - 4. (End)
a(n) = 34*A002450(n-1) + 11 . - Yosu Yurramendi, Jan 24 2017
E.g.f.: (-15 - 2*exp(x) + 17*exp(4*x))/6. - G. C. Greubel, Jan 14 2020
Extensions
Edited and extended by Robert G. Wilson v, Jul 17 2002
Comments