cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072266 Number of words of length 2n generated by the two letters s and t that reduce to the identity 1 using the relations sssssss=1, tt=1 and stst=1. The generators s and t along with the three relations generate the 14-element dihedral group D7.

Original entry on oeis.org

1, 1, 3, 10, 35, 126, 462, 1717, 6451, 24463, 93518, 360031, 1394582, 5430530, 21242341, 83411715, 328589491, 1297937234, 5138431851, 20380608990, 80960325670, 322016144629, 1282138331587, 5109310929719, 20374764059254
Offset: 0

Views

Author

Jamaine Paddyfoot (jay_paddyfoot(AT)hotmail.com) and John W. Layman, Jul 08 2002

Keywords

Examples

			The words tttt=tsts=stst=1 so a(2)=3.
		

Crossrefs

Bisection of A377573.

Programs

  • Mathematica
    LinearRecurrence[{9,-26,25,-4},{1,1,3,10,35},30] (* Harvey P. Dale, Apr 16 2022 *)
  • PARI
    a(n)=if(n<1,n==0,sum(k=-(n-1)\7,(n-1)\7,C(2*n-1,n+7*k)))
    
  • PARI
    Vec((1 - 8*x + 20*x^2 - 16*x^3 + 2*x^4) / ((1 - 4*x)*(1 - 5*x + 6*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Apr 26 2019

Formula

G.f.: 1 -x*(2*x-1)*(x^2-4*x+1)/((4*x-1)*(x^3-6*x^2+5*x-1)). - Michael Somos, Jul 21 2002
a(n) = 9*a(n-1) - 26*a(n-2) + 25*a(n-3) - 4*a(n-4) for n>4. - Colin Barker, Apr 26 2019
14*a(n) = 4^n +2*(3*A005021(n) -10*A005021(n-1) +6*A005021(n-2)), n>0. - R. J. Mathar, Nov 05 2024