cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072328 a(n+1) = 2*a(n-2) + a(n-1), with a(0) = 3, a(1) = 0, and a(2) = 2.

Original entry on oeis.org

3, 0, 2, 6, 2, 10, 14, 14, 34, 42, 62, 110, 146, 234, 366, 526, 834, 1258, 1886, 2926, 4402, 6698, 10254, 15502, 23650, 36010, 54654, 83310, 126674, 192618, 293294, 445966, 678530, 1032554, 1570462, 2389614, 3635570, 5530538, 8414798, 12801678, 19475874
Offset: 0

Views

Author

Miklos Kristof, Jul 15 2002

Keywords

Comments

With the term indexed as shown, has property that p prime => p divides a(p).
a(n) = x^n + y^n + z^n with x, y, z the three roots of x^3 - x - 2. - James R. Buddenhagen, Nov 05 2013

Examples

			a(10)=2*a(7)+a(8): 62=2*14+34.
		

Crossrefs

Cf. A001608.

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 2}, {3, 0, 2}, 50] (* T. D. Noe, Nov 05 2013 *)
    Table[RootSum[-2 - #1 + #1^3 &, #^n &], {n, 0, 40}] (* Eric W. Weisstein, Dec 09 2014 *)

Formula

e=-1/2+i*sqrt(3)/2, e^2=-1/2-i*sqrt(3)/2, x=(1+sqrt(26/27))^(1/3)+(1-sqrt(26/27))^(1/3), y=e*(1+sqrt(26/27))^(1/3)+(e^2)*(1-sqrt(26/27))^(1/3), z=(e^2)*(1+sqrt(26/27))^(1/3)+e*(1-sqrt(26/27))^(1/3), a(n)=x^n+y^n+z^n.

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021