A072330 Common difference n such that primitive triangles exist which are n-arithmetic (i.e., primitive Heronian triangles whose sides in arithmetic progression have common difference n).
1, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 121, 131, 143, 157, 167, 169, 179, 181, 191, 193, 227, 229, 239, 241, 251, 253, 263, 277, 299, 311, 313, 337, 347, 349, 359, 373, 383, 397, 407, 409, 419, 421, 431, 433, 443, 457, 467, 479, 481, 491, 503
Offset: 1
Keywords
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
- R. A. Beauregard and E. R. Suryanarayan, Arithmetic Triangles, Mathematics Magazine, pp. 105-115 70(2) 1997 MAA.
Programs
-
Maple
isA072330 := proc(n) if n = 1 then true; else for p in ifactors(n)[2] do if not modp(op(1,p),12) in {1,11} then return false ; end if; end do: true; end if; end proc: for n from 1 to 1000 do if isA072330(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Feb 26 2017
-
Mathematica
fac12Q[n_] := And @@ (MemberQ[{1, 11}, #] & /@ Mod[First /@ FactorInteger@ n, 12]); Select[Range[600], fac12Q] (* Frank M Jackson, Apr 09 2016 with simplification by Giovanni Resta *) okQ[n_] := AllTrue[FactorInteger[n][[All, 1]], MatchQ[Mod[#, 12], 1|11]&]; Select[Range[1000], okQ] (* Jean-François Alcover, Mar 06 2020 *)
Formula
n = 1 or a product of primes p congruent to +- 1 (mod 12).
Extensions
Corrected and extended by Ray Chandler, Jul 02 2004
Incorrect b-file by Carmine Suriano replaced by Frank M Jackson, May 09 2016
Comments