A072357 Cubefree nonsquares whose factorization into a product of primes contains exactly one square.
12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 75, 76, 84, 90, 92, 98, 99, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 188, 198, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279, 284, 292, 294, 306, 308
Offset: 1
Keywords
Examples
a(14) = 84 = 7*3*2^2; the following numbers are not terms: 36=6^2, as it is a square; 54=2*3^3, as it is not cubefree; 42=2*3*7, as there is no squared prime; 72=2*6^2, as 72 has two squared prime divisors: 2^2 and 3^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000 ( 1..100 from Paolo P. Lava)
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, [$2..floor(N^(1/2))]): SF:= select(numtheory:-issqrfree, [$2..N/4]): S:= {seq(op(map(p -> p^2*t, select(s -> igcd(s,t)=1 and s^2*t <= N, Primes))), t = SF)}: sort(convert(S,list)); # Robert Israel, Mar 08 2016
-
Mathematica
Select[Range@ 308, And[PrimeNu@ # > 1, PrimeOmega@ # - PrimeNu@ # == 1] &] (* Michael De Vlieger, Mar 09 2016 *)
-
PARI
isok(n) = (omega(n) > 1) && (bigomega(n) - omega(n) == 1); \\ Michel Marcus, Jul 16 2015
Comments