A072364 Decimal expansion of (1/e)^(1/e).
6, 9, 2, 2, 0, 0, 6, 2, 7, 5, 5, 5, 3, 4, 6, 3, 5, 3, 8, 6, 5, 4, 2, 1, 9, 9, 7, 1, 8, 2, 7, 8, 9, 7, 6, 1, 4, 9, 0, 6, 7, 8, 0, 2, 9, 2, 9, 7, 5, 4, 4, 7, 3, 5, 9, 3, 8, 9, 1, 4, 8, 9, 9, 9, 6, 5, 1, 7, 1, 5, 5, 9, 0, 2, 9, 0, 8, 5, 3, 6, 2, 1, 2, 3, 0, 1, 2, 3, 8, 7, 6, 4, 9, 3, 5, 3, 0, 9, 8, 3, 4, 7, 6, 0, 4
Offset: 0
Examples
0.69220062755534635386...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 26, page 233.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Alex Chin et al., Pick a Tree-Any Tree, The American Mathematical Monthly, 122.5 (2015): 424-432.
- Plouffe's Inverter entry for .69220062755.
- Jonathan Sondow and Diego Marques, Algebraic and transcendental solutions of some exponential equations, arXiv:1108.6096 [math.NT], 2011; Annales Mathematicae et Informaticae 37 (2010) 151-164; see p. 3 in the link.
Crossrefs
Programs
-
Magma
(Exp(-1))^(Exp(-1)); // G. C. Greubel, May 29 2018
-
Maple
evalf(exp(-1/exp(1)), 120); # Alois P. Heinz, Oct 26 2021
-
Mathematica
RealDigits[E^(-1/E), 10, 111][[1]]
-
PARI
(1/exp(1))^(1/exp(1))
-
PARI
exp(-1/exp(1)) \\ Charles R Greathouse IV, Sep 01 2011
Formula
From Amiram Eldar, Aug 19 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(exp(k)*k!).
Equals Product_{k>=0} exp((-1)^(k+1)/k!). (End)
Comments