A072392 Numbers n such that reverse(n) = phi(n) (mod n).
21, 27, 37, 63, 270, 291, 397, 1545, 1853, 2991, 6102, 15503, 27036, 48776, 198683, 200882, 274536, 1061361, 2348128, 2723436, 2746836, 3542805, 3564217, 3868867, 3962197, 4438616, 19844683, 46676013, 69460293, 198444683, 202195682, 297828396, 309520655
Offset: 1
Examples
reverse(48776) = 67784 = 19008 (mod 48776) and 19008 = phi(48776), so 48776 is a term of the sequence.
Programs
-
Mathematica
Select[Range[10^5], Mod[ FromDigits[Reverse[IntegerDigits[n]]], # ] == EulerPhi[ # ] &] Select[Range[45*10^5],Mod[IntegerReverse[#],#]==EulerPhi[#]&] (* The program generates the first 26 terms of the sequence. *) (* Harvey P. Dale, Feb 05 2025 *)
Extensions
More terms from Sean A. Irvine, Sep 28 2024