A072411 LCM of exponents in prime factorization of n, a(1) = 1.
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 3
Offset: 1
Examples
n = 288 = 2*2*2*2*2*3*3; lcm(5,2) = 10; Product(5,2) = 10, max(5,2) = 5; n = 180 = 2*2*3*3*5; lcm(2,2,1) = 2; Product(2,2,1) = 4; max(2,2,1) = 2; it deviates both from maximum of exponents (A051903, for the first time at n=72), and product of exponents (A005361, for the first time at n=36). For n = 36 = 2*2*3*3 = 2^2 * 3^2 we have a(36) = lcm(2,2) = 2. For n = 72 = 2*2*2*3*3 = 2^3 * 3^2 we have a(72) = lcm(2,3) = 6. For n = 144 = 2^4 * 3^2 we have a(144) = lcm(2,4) = 4. For n = 360 = 2^3 * 3^2 * 5^1 we have a(360) = lcm(1,2,3) = 6.
Links
Crossrefs
Similar sequences: A001222 (sum of exponents), A005361 (product), A051903 (maximal exponent), A051904 (minimal exponent), A052409 (gcd of exponents), A267115 (bitwise-and), A267116 (bitwise-or), A268387 (bitwise-xor).
Differs from A290107 for the first time at n=144.
After the initial term, differs from A157754 for the first time at n=360.
Programs
-
Mathematica
Table[LCM @@ Last /@ FactorInteger[n], {n, 2, 100}] (* Ray Chandler, Jan 24 2006 *)
-
PARI
a(n) = lcm(factor(n)[,2]); \\ Michel Marcus, Mar 25 2017
-
Python
from sympy import lcm, factorint def a(n): l=[] f=factorint(n) for i in f: l+=[f[i],] return lcm(l) print([a(n) for n in range(1, 151)]) # Indranil Ghosh, Mar 25 2017
Formula
From Antti Karttunen, Aug 22 2017: (Start)
Extensions
a(1) = 1 prepended and the data section filled up to 120 terms by Antti Karttunen, Aug 09 2016
Comments