A072438 Remove prime factors of form 4*k+1.
1, 2, 3, 4, 1, 6, 7, 8, 9, 2, 11, 12, 1, 14, 3, 16, 1, 18, 19, 4, 21, 22, 23, 24, 1, 2, 27, 28, 1, 6, 31, 32, 33, 2, 7, 36, 1, 38, 3, 8, 1, 42, 43, 44, 9, 46, 47, 48, 49, 2, 3, 4, 1, 54, 11, 56, 57, 2, 59, 12, 1, 62, 63, 64, 1, 66, 67, 4, 69, 14, 71, 72, 1, 2, 3, 76, 77, 6, 79, 16, 81, 2
Offset: 1
Examples
a(90) = a(2*3*3*5) = a(2*(4*0+3)^2*(4*1+1)^1) = 2*3^2*1 = 18.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> mul(`if`(irem(i[1], 4)=1, 1, i[1]^i[2]), i=ifactors(n)[2]): seq(a(n), n=1..100); # Alois P. Heinz, Jun 09 2014
-
Mathematica
a[n_] := n/Product[{p, e} = pe; If[Mod[p, 4] == 1, p^e, 1], {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, May 29 2019 *)
-
PARI
a(n) = my(f=factor(n)); for (i=1, #f~, if ((f[i,1] % 4) == 1, f[i,1] = 1)); factorback(f); \\ Michel Marcus, Jun 09 2014
-
Python
from sympy import factorint, prod def a(n): f = factorint(n) return 1 if n == 1 else prod(i**f[i] for i in f if i%4 != 1) # Indranil Ghosh, May 08 2017
Formula
Multiplicative with a(p)=(if p==1 (mod 4) then 1 else p).
Comments