A072439 Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.
2, 5, 41, 67, 73, 83, 97, 113, 193, 197, 211, 269, 281, 283, 353, 389, 521, 523, 547, 563, 587, 593, 601, 647, 661, 691, 929, 937, 1061, 1063, 1097, 1109, 1117, 1123, 1289, 1319, 1361, 1381, 1489, 1549, 1559, 1567, 1571, 1579, 1597, 1801, 1873, 2069
Offset: 1
Examples
In binary representation 13 and A000040(13)=41 have three 1's: 13='1101' and 41='101001', therefore 41 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Prime[Select[Range[400], DigitCount[#, 2, 1] == DigitCount[Prime[#], 2, 1] &]] (* Amiram Eldar, Aug 03 2023 *)
-
PARI
isok(p) = isprime(p) && ((hammingweight(p) == hammingweight(primepi(p)))); \\ Michel Marcus, Jun 14 2021