cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072439 Primes prime(k) such that the number of binary 1's in prime(k) equals the number of binary 1's in k.

Original entry on oeis.org

2, 5, 41, 67, 73, 83, 97, 113, 193, 197, 211, 269, 281, 283, 353, 389, 521, 523, 547, 563, 587, 593, 601, 647, 661, 691, 929, 937, 1061, 1063, 1097, 1109, 1117, 1123, 1289, 1319, 1361, 1381, 1489, 1549, 1559, 1567, 1571, 1579, 1597, 1801, 1873, 2069
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 17 2002

Keywords

Examples

			In binary representation 13 and A000040(13)=41 have three 1's: 13='1101' and 41='101001', therefore 41 is a term.
		

Crossrefs

Programs

  • Mathematica
    Prime[Select[Range[400], DigitCount[#, 2, 1] == DigitCount[Prime[#], 2, 1] &]] (* Amiram Eldar, Aug 03 2023 *)
  • PARI
    isok(p) = isprime(p) && ((hammingweight(p) == hammingweight(primepi(p)))); \\ Michel Marcus, Jun 14 2021

Formula

A000120(a(n)) = A000120(A071600(n)) = A014499(n).
A090455(A049084(a(n))) = 0.
a(n) = A000040(A071600(n)).